-
Je něco špatně v tomto záznamu ?
PMD patient mutations reveal a long-distance intronic interaction that regulates PLP1/DM20 alternative splicing
JR. Taube, K. Sperle, L. Banser, P. Seeman, BC. Cavan, JY. Garbern, GM. Hobson,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
NT14348
MZ0
CEP - Centrální evidence projektů
Digitální knihovna NLK
Plný text - Článek
Zdroj
NLK
Free Medical Journals
od 1996 do Před 1 rokem
Open Access Digital Library
od 1996-01-01
PubMed
24890387
DOI
10.1093/hmg/ddu271
Knihovny.cz E-zdroje
- MeSH
- alternativní sestřih * MeSH
- buněčné linie MeSH
- introny * MeSH
- konformace nukleové kyseliny MeSH
- lidé MeSH
- messenger RNA chemie metabolismus MeSH
- molekulární modely MeSH
- mutace MeSH
- myelinový proteolipidový protein genetika metabolismus MeSH
- oligodendroglie metabolismus MeSH
- párování bází MeSH
- Pelizaeusova-Merzbacherova nemoc genetika MeSH
- rodokmen MeSH
- sekvenční analýza DNA MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Alternative splicing of the proteolipid protein 1 gene (PLP1) produces two forms, PLP1 and DM20, due to alternative use of 5' splice sites with the same acceptor site in intron 3. The PLP1 form predominates in central nervous system RNA. Mutations that reduce the ratio of PLP1 to DM20, whether mutant or normal protein is formed, result in the X-linked leukodystrophy Pelizaeus-Merzbacher disease (PMD). We investigated the ability of sequences throughout PLP1 intron 3 to regulate alternative splicing using a splicing minigene construct transfected into the oligodendrocyte cell line, Oli-neu. Our data reveal that the alternative splice of PLP1 is regulated by a long-distance interaction between two highly conserved elements that are separated by 581 bases within the 1071-base intron 3. Further, our data suggest that a base-pairing secondary structure forms between these two elements, and we demonstrate that mutations of either element designed to destabilize the secondary structure decreased the PLP1/DM20 ratio, while swap mutations designed to restore the structure brought the PLP1/DM20 ratio to near normal levels. Sequence analysis of intron 3 in families with clinical symptoms of PMD who did not have coding-region mutations revealed mutations that segregated with disease in three families. We showed that these patient mutations, which potentially destabilize the secondary structure, also reduced the PLP1/DM20 ratio. This is the first report of patient mutations causing disease by disruption of a long-distance intronic interaction controlling alternative splicing. This finding has important implications for molecular diagnostics of PMD.
Department of Neurology University of Rochester Medical Center Rochester NY 14642 USA
Department of Pediatrics Cebu Institute of Medicine 6000 Cebu City Philippines
Nemours Biomedical Research Alfred 1 duPont Hospital for Children Wilmington DE 19803 USA
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc15023358
- 003
- CZ-PrNML
- 005
- 20181030101524.0
- 007
- ta
- 008
- 150709s2014 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1093/hmg/ddu271 $2 doi
- 035 __
- $a (PubMed)24890387
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Taube, Jennifer R $u Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA.
- 245 10
- $a PMD patient mutations reveal a long-distance intronic interaction that regulates PLP1/DM20 alternative splicing / $c JR. Taube, K. Sperle, L. Banser, P. Seeman, BC. Cavan, JY. Garbern, GM. Hobson,
- 520 9_
- $a Alternative splicing of the proteolipid protein 1 gene (PLP1) produces two forms, PLP1 and DM20, due to alternative use of 5' splice sites with the same acceptor site in intron 3. The PLP1 form predominates in central nervous system RNA. Mutations that reduce the ratio of PLP1 to DM20, whether mutant or normal protein is formed, result in the X-linked leukodystrophy Pelizaeus-Merzbacher disease (PMD). We investigated the ability of sequences throughout PLP1 intron 3 to regulate alternative splicing using a splicing minigene construct transfected into the oligodendrocyte cell line, Oli-neu. Our data reveal that the alternative splice of PLP1 is regulated by a long-distance interaction between two highly conserved elements that are separated by 581 bases within the 1071-base intron 3. Further, our data suggest that a base-pairing secondary structure forms between these two elements, and we demonstrate that mutations of either element designed to destabilize the secondary structure decreased the PLP1/DM20 ratio, while swap mutations designed to restore the structure brought the PLP1/DM20 ratio to near normal levels. Sequence analysis of intron 3 in families with clinical symptoms of PMD who did not have coding-region mutations revealed mutations that segregated with disease in three families. We showed that these patient mutations, which potentially destabilize the secondary structure, also reduced the PLP1/DM20 ratio. This is the first report of patient mutations causing disease by disruption of a long-distance intronic interaction controlling alternative splicing. This finding has important implications for molecular diagnostics of PMD.
- 650 12
- $a alternativní sestřih $7 D017398
- 650 _2
- $a párování bází $7 D020029
- 650 _2
- $a buněčné linie $7 D002460
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a introny $7 D007438
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a molekulární modely $7 D008958
- 650 _2
- $a mutace $7 D009154
- 650 _2
- $a myelinový proteolipidový protein $x genetika $x metabolismus $7 D018991
- 650 _2
- $a konformace nukleové kyseliny $7 D009690
- 650 _2
- $a oligodendroglie $x metabolismus $7 D009836
- 650 _2
- $a rodokmen $7 D010375
- 650 _2
- $a Pelizaeusova-Merzbacherova nemoc $x genetika $7 D020371
- 650 _2
- $a messenger RNA $x chemie $x metabolismus $7 D012333
- 650 _2
- $a sekvenční analýza DNA $7 D017422
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a Research Support, N.I.H., Extramural $7 D052061
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Sperle, Karen $u Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA.
- 700 1_
- $a Banser, Linda $u Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA.
- 700 1_
- $a Seeman, Pavel, $u Department of Child Neurology, DNA Laboratory, 2nd School of Medicine, Charles University and University Hospital Motol, 150 06 Prague 5, Czech Republic. $d 1966- $7 xx0037870
- 700 1_
- $a Cavan, Barbra Charina V $u Department of Pediatrics, Cebu Institute of Medicine, 6000 Cebu City, Philippines.
- 700 1_
- $a Garbern, James Y $u Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA.
- 700 1_
- $a Hobson, Grace M $u Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA, Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA and Department of Pediatrics, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA ghobson@nemours.org.
- 773 0_
- $w MED00002077 $t Human molecular genetics $x 1460-2083 $g Roč. 23, č. 20 (2014), s. 5464-5478
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/24890387 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20150709 $b ABA008
- 991 __
- $a 20181030102041 $b ABA008
- 999 __
- $a ok $b bmc $g 1083696 $s 906351
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2014 $b 23 $c 20 $d 5464-5478 $i 1460-2083 $m Human molecular genetics $n Hum Mol Genet $x MED00002077
- GRA __
- $a NT14348 $p MZ0
- LZP __
- $a Pubmed-20150709