PMD patient mutations reveal a long-distance intronic interaction that regulates PLP1/DM20 alternative splicing

. 2014 Oct 15 ; 23 (20) : 5464-78. [epub] 20140601

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24890387

Grantová podpora
P20 RR020173 NCRR NIH HHS - United States
R01 NS058978 NINDS NIH HHS - United States
R01NS058978 NINDS NIH HHS - United States
P20GM103464 NIGMS NIH HHS - United States

Alternative splicing of the proteolipid protein 1 gene (PLP1) produces two forms, PLP1 and DM20, due to alternative use of 5' splice sites with the same acceptor site in intron 3. The PLP1 form predominates in central nervous system RNA. Mutations that reduce the ratio of PLP1 to DM20, whether mutant or normal protein is formed, result in the X-linked leukodystrophy Pelizaeus-Merzbacher disease (PMD). We investigated the ability of sequences throughout PLP1 intron 3 to regulate alternative splicing using a splicing minigene construct transfected into the oligodendrocyte cell line, Oli-neu. Our data reveal that the alternative splice of PLP1 is regulated by a long-distance interaction between two highly conserved elements that are separated by 581 bases within the 1071-base intron 3. Further, our data suggest that a base-pairing secondary structure forms between these two elements, and we demonstrate that mutations of either element designed to destabilize the secondary structure decreased the PLP1/DM20 ratio, while swap mutations designed to restore the structure brought the PLP1/DM20 ratio to near normal levels. Sequence analysis of intron 3 in families with clinical symptoms of PMD who did not have coding-region mutations revealed mutations that segregated with disease in three families. We showed that these patient mutations, which potentially destabilize the secondary structure, also reduced the PLP1/DM20 ratio. This is the first report of patient mutations causing disease by disruption of a long-distance intronic interaction controlling alternative splicing. This finding has important implications for molecular diagnostics of PMD.

Zobrazit více v PubMed

Desmet F.O., Hamroun D., Lalande M., Collod-Béroud G., Claustres M., Béroud C. Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 2009;37:e67. PubMed PMC

Nalla V.K., Rogan P.K. Automated splicing mutation analysis by information theory. Hum. Mutat. 2005;25:334–342. PubMed

Sim N.L., Kumar P., Hu J., Henikoff S., Schneider G., Ng P.C. SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 2012;40:W452–W457. PubMed PMC

Adzhubei I.A., Schmidt S., Peshkin L., Ramensky V.E., Gerasimova A., Bork P., Kondrashov A.S., Sunyaev S.R. A method and server for predicting damaging missense mutations. Nat. Methods. 2010;7:248–249. PubMed PMC

Gonzalez-Perez A., Lopez-Bigas N. Improving the assessment of the outcome of nonsynonymous SNVs with a consensus deleteriousness score, Condel. Am. J. Hum. Genet. 2011;88:440–449. PubMed PMC

Shihab H.A., Gough J., Cooper D.N., Stenson P.D., Barker G.L., Edwards K.J., Day I.N., Gaunt T.R. Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Hum. Mutat. 2013;34:57–65. PubMed PMC

Pagani F., Baralle F.E. Genomic variants in exons and introns: identifying the splicing spoilers. Nat. Rev. Genet. 2004;5:389–396. PubMed

Baralle D., Baralle M. Splicing in action: assessing disease causing sequence changes. J. Med. Genet. 2005;42:737–748. PubMed PMC

de Vooght K.M., van Wijk R., van Solinge W.W. Management of gene promoter mutations in molecular diagnostics. Clin. Chem. 2009;55:698–708. PubMed

Buratti E., Baralle M., Baralle F.E. Defective splicing, disease and therapy: searching for master checkpoints in exon definition. Nucleic Acids Res. 2006;34:3494–3510. PubMed PMC

Hobson G.M., Garbern J.Y. Pelizaeus-Merzbacher disease, Pelizaeus-Merzbacher-like disease 1, and related hypomyelinating disorders. Semin. Neurol. 2012;32:62–67. PubMed

Laukka J.J., Stanley J.A., Garbern J.Y., Trepanier A., Hobson G., Lafleur T., Gow A., Kamholz J. Neuroradiologic correlates of clinical disability and progression in the X-Linked leukodystrophy Pelizaeus-Merzbacher disease. J. Neurol. Sci. 2013;335:75–81. PubMed PMC

Hobson G.M., Huang Z., Sperle K., Stabley D.L., Marks H.G., Cambi F. A PLP splicing abnormality is associated with an unusual presentation of PMD. Ann. Neurol. 2002;52:477–488. PubMed

Hobson G.M., Huang Z., Sperle K., Sistermans E., Rogan P.K., Garbern J.Y., Kolodny E., Naidu S., Cambi F. Splice-site contribution in alternative splicing of PLP1 and DM20: molecular studies in oligodendrocytes. Hum. Mutat. 2006;27:69–77. PubMed

Grossi S., Regis S., Biancheri R., Mort M., Lualdi S., Bertini E., Uziel G., Boespflug-Tanguy O., Simonati A., Corsolini F., et al. Molecular genetic analysis of the PLP1 gene in 38 families with PLP1-related disorders: identification and functional characterization of 11 novel PLP1 mutations. Orphanet J. Rare Dis. 2011;6:40. PubMed PMC

Hübner C.A., Orth U., Senning A., Steglich C., Kohlschutter A., Korinthenberg R., Gal A. Seventeen novel PLP1 mutations in patients with Pelizaeus-Merzbacher disease. Hum. Mutat. 2005;25:321–322. PubMed

LeVine S.M., Wong D., Macklin W.B. Developmental expression of proteolipid protein and DM20 mRNAs and proteins in the rat brain. Dev. Neurosci. 1990;12:235–250. PubMed

Timsit S.G., Bally-Cuif L., Colman D.R., Zalc B. DM-20 mRNA is expressed during the embryonic development of the nervous system of the mouse. J. Neurochem. 1992;58:1172–1175. PubMed

Bonnet-Dupeyron M.N., Combes P., Santander P., Cailloux F., Boespflug-Tanguy O., Vaurs-Barriere C. PLP1 splicing abnormalities identified in Pelizaeus-Merzbacher disease and SPG2 fibroblasts are associated with different types of mutations. Hum. Mutat. 2008;29:1028–1036. PubMed

Wang E., Huang Z., Hobson G.M., Dimova N., Sperle K., McCullough A., Cambi F. PLP1 alternative splicing in differentiating oligodendrocytes: characterization of an exonic splicing enhancer. J. Cell. Biochem. 2006;97:999–1016. PubMed

Laššuthová P., Žaliová M., Inoue K., Haberlová J., Sixtová K., Sakmaryová I., Paděrová K., Mazanec R., Zámečnik J., Šišková D., et al. Three new PLP1 splicing mutations demonstrate pathogenic and phenotypic diversity of Pelizaeus-Merzbacher disease. J. Child Neurol. 2013 advance online publication, doi: 10.1177/0883073813492387. PubMed

Wang Y., Ma M., Xiao X., Wang Z. Intronic splicing enhancers, cognate splicing factors and context-dependent regulation rules. Nat. Struct. Mol. Biol. 2012;19:1044–1052. PubMed PMC

Wang E., Dimova N., Sperle K., Huang Z., Lock L., McCulloch M.C., Edgar J.M., Hobson G.M., Cambi F. Deletion of a splicing enhancer disrupts PLP1/DM20 ratio and myelin stability. Exp. Neurol. 2008;214:322–330. PubMed

Wang E.T., Sandberg R., Luo S., Khrebtukova I., Zhang L., Mayr C., Kingsmore S.F., Schroth G.P., Burge C.B. Alternative isoform regulation in human tissue transcriptomes. Nature. 2008;456:470–476. PubMed PMC

Bejerano G., Pheasant M., Makunin I., Stephen S., Kent W.J., Mattick J.S., Haussler D. Ultraconserved elements in the human genome. Science. 2004;304:1321–1325. PubMed

Sorek R., Ast G. Intronic sequences flanking alternatively spliced exons are conserved between human and mouse. Genome Res. 2003;13:1631–1637. PubMed PMC

Wang E., Dimova N., Cambi F. PLP/DM20 ratio is regulated by hnRNPH and F and a novel G-rich enhancer in oligodendrocytes. Nucleic Acids Res. 2007;35:4164–4178. PubMed PMC

Wang E., Cambi F. Heterogeneous nuclear ribonucleoproteins H and F regulate the proteolipid protein/DM20 ratio by recruiting U1 small nuclear ribonucleoprotein through a complex array of G runs. J. Biol. Chem. 2009;284:11194–11204. PubMed PMC

Wang E., Mueller W.F., Hertel K.J., Cambi F. G Run-mediated recognition of proteolipid protein and DM20 5′ splice sites by U1 small nuclear RNA is regulated by context and proximity to the splice site. J. Biol. Chem. 2011;286:4059–4071. PubMed PMC

Mimault C., Cailloux F., Giraud G., Dastugue B., Boespflug-Tanguy O. Dinucleotide repeat polymorphism in the proteolipoprotein (PLP) gene. Hum. Genet. 1995;96:236. PubMed

Davis R.L., Homer V.M., George P.M., Brennan S.O. A deep intronic mutation in FGB creates a consensus exonic splicing enhancer motif that results in afibrinogenemia caused by aberrant mRNA splicing, which can be corrected in vitro with antisense oligonucleotide treatment. Hum. Mutat. 2009;30:221–227. PubMed

Zhang J., Kuo C.C., Chen L. GC content around splice sites affects splicing through pre-mRNA secondary structures. BMC Genomics. 2011;12:90. PubMed PMC

Hertel K.J. Combinatorial control of exon recognition. J. Biol. Chem. 2008;283:1211–1215. PubMed

Shepard P.J., Hertel K.J. Conserved RNA secondary structures promote alternative splicing. RNA. 2008;14:1463–1469. PubMed PMC

Züker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31:3406–3415. PubMed PMC

Borensztajn K., Sobrier M.L., Duquesnoy P., Fischer A.M., Tapon-Bretaudiere J., Amselem S. Oriented scanning is the leading mechanism underlying 5′ splice site selection in mammals. PLoS Genet. 2006;2:e138. PubMed PMC

Nadon N.L., Miller S., Draeger K., Salvaggio M. Myelin proteolipid DM20: evidence for function independent of myelination. Int. J. Dev. Neurosci. 1997;15:285–293. PubMed

Campagnoni C.W., Garbay B., Micevych P., Pribyl T., Kampf K., Handley V.W., Campagnoni A.T. DM20 mRNA splice product of the myelin proteolipid protein gene is expressed in the murine heart. J. Neurosci. Res. 1992;33:148–155. PubMed

Jacobs E., Mills J.D., Janitz M. The role of RNA structure in posttranscriptional regulation of gene expression. J. Genet. Genomics. 2012;39:535–543. PubMed

Warf M.B., Berglund J.A. Role of RNA structure in regulating pre-mRNA splicing. Trends Biochem. Sci. 2010;35:169–178. PubMed PMC

Singh N.N., Singh R.N., Androphy E.J. Modulating role of RNA structure in alternative splicing of a critical exon in the spinal muscular atrophy genes. Nucleic Acids Res. 2007;35:371–389. PubMed PMC

Sirand-Pugnet P., Durosay P., Clouet d'Orval B.C., Brody E., Marie J. Beta-Tropomyosin pre-mRNA folding around a muscle-specific exon interferes with several steps of spliceosome assembly. J. Mol. Biol. 1995;251:591–602. PubMed

Varani L., Hasegawa M., Spillantini M.G., Smith M.J., Murrell J.R., Ghetti B., Klug A., Goedert M., Varani G. Structure of tau exon 10 splicing regulatory element RNA and destabilization by mutations of frontotemporal dementia and parkinsonism linked to chromosome 17. Proc. Natl Acad. Sci. USA. 1999;96:8229–8234. PubMed PMC

Warf M.B., Diegel J.V., von Hippel P.H., Berglund J.A. The protein factors MBNL1 and U2AF65 bind alternative RNA structures to regulate splicing. Proc. Natl Acad. Sci. USA. 2009;106:9203–9208. PubMed PMC

Kar A., Fushimi K., Zhou X., Ray P., Shi C., Chen X., Liu Z., Chen S., Wu J.Y. RNA helicase p68 (DDX5) regulates tau exon 10 splicing by modulating a stem-loop structure at the 5′ splice site. Mol. Cell. Biol. 2011;31:1812–1821. PubMed PMC

Lovci M.T., Ghanem D., Marr H., Arnold J., Gee S., Parra M., Liang T.Y., Stark T.J., Gehman L.T., Hoon S., et al. Rbfox proteins regulate alternative mRNA splicing through evolutionarily conserved RNA bridges. Nat. Struct. Mol. Biol. 2013;20:1434–1442. PubMed PMC

Buratti E., Baralle F.E. Influence of RNA secondary structure on the pre-mRNA splicing process. Mol. Cell. Biol. 2004;24:10505–10514. PubMed PMC

Yang Y., Sun F., Wang X., Yue Y., Wang W., Zhang W., Zhan L., Tian N., Shi F., Jin Y. Conservation and regulation of alternative splicing by dynamic inter- and intra-intron base pairings in Lepidoptera 14-3-3ξ pre-mRNAs. RNA Biol. 2012;9:691–700. PubMed

Singh N.N., Lawler M.N., Ottesen E.W., Upreti D., Kaczynski J.R., Singh R.N. An intronic structure enabled by a long-distance interaction serves as a novel target for splicing correction in spinal muscular atrophy. Nucleic Acids Res. 2013;41:8144–8165. PubMed PMC

Jung M., Kramer E., Grzenkowski M., Tang K., Blakemore W., Aguzzi A., Khazaie K., Chlichlia K., von Blankenfeld G., Kettenmann H., et al. Lines of murine oligodendroglial precursor cells immortalized by an activated neu tyrosine kinase show distinct degrees of interaction with axons in vitro and in vivo. Eur. J. Neurosci. 1995;7:1245–1265. PubMed

Carango P., Funanage V.L., Quirós R.E., Debruyn C.S., Marks H.G. Overexpression of DM20 messenger RNA in two brothers with Pelizaeus-Merzbacher disease. Ann. Neurol. 1995;38:610–617. PubMed

Fairbrother W.G., Yeh R.F., Sharp P.A., Burge C.B. Predictive identification of exonic splicing enhancers in human genes. Science. 2002;297:1007–1013. PubMed

Cartegni L., Wang J., Zhu Z., Zhang M.Q., Krainer A.R. ESEfinder: a web resource to identify exonic splicing enhancers. Nucleic Acids Res. 2003;31:3568–3571. PubMed PMC

Smith P.J., Zhang C., Wang J., Chew S.L., Zhang M.Q., Krainer A.R. An increased specificity score matrix for the prediction of SF2/ASF-specific exonic splicing enhancers. Hum. Mol. Genet. 2006;15:2490–2508. PubMed

Rogan P.K., Faux B.M., Schneider T.D. Information analysis of human splice site mutations. Hum. Mutat. 1998;12:153–171. PubMed

Carmel I., Tal S., Vig I., Ast G. Comparative analysis detects dependencies among the 5′ splice-site positions. RNA. 2004;10:828–840. PubMed PMC

Rice P., Longden I., Bleasby A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 2000;16:276–277. PubMed

Crooks G.E., Hon G., Chandonia J.M., Brenner S.E. WebLogo: a sequence logo generator. Genome Res. 2004;14:1188–1190. PubMed PMC

Schneider T.D., Stephens R.M. Sequence logos: a new way to display consensus sequences. Nucleic Acids Res. 1990;18:6097–6100. PubMed PMC

Subramaniam S. The Biology Workbench—a seamless database and analysis environment for the biologist. Proteins. 1998;32:1–2. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...