-
Something wrong with this record ?
ROS production in brown adipose tissue mitochondria: the question of UCP1-dependence
IG. Shabalina, M. Vrbacký, A. Pecinová, AV. Kalinovich, Z. Drahota, J. Houštěk, T. Mráček, B. Cannon, J. Nedergaard,
Language English Country Netherlands
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Electron Spin Resonance Spectroscopy MeSH
- Glycerophosphates pharmacology MeSH
- Guanosine Diphosphate pharmacology MeSH
- Adipose Tissue, Brown metabolism MeSH
- Immunoblotting MeSH
- Ion Channels genetics metabolism MeSH
- Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone pharmacology MeSH
- Succinic Acid pharmacology MeSH
- Pyruvic Acid pharmacology MeSH
- Membrane Potential, Mitochondrial drug effects MeSH
- Mitochondrial Proteins genetics metabolism MeSH
- Mitochondria drug effects metabolism physiology MeSH
- Mice, Inbred C57BL MeSH
- Mice, Knockout MeSH
- Cold Temperature MeSH
- Hydrogen Peroxide metabolism MeSH
- Proton Ionophores pharmacology MeSH
- Reactive Oxygen Species metabolism MeSH
- Oxygen Consumption drug effects MeSH
- Superoxides metabolism MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Whether active UCP1 can reduce ROS production in brown-fat mitochondria is presently not settled. The issue is of principal significance, as it can be seen as a proof- or disproof-of-principle concerning the ability of any protein to diminish ROS production through membrane depolarization. We therefore undertook a comprehensive investigation of the significance of UCP1 for ROS production, by comparing the ROS production in brown-fat mitochondria isolated from wildtype mice (that display membrane depolarization) or from UCP1(-/-) mice (with a high membrane potential). We tested the significance of UCP1 for glycerol-3-phosphate-supported ROS production by three methods (fluorescent dihydroethidium and the ESR probe PHH for superoxide, and fluorescent Amplex Red for hydrogen peroxide), and followed ROS production also with succinate, acyl-CoA or pyruvate as substrate. We studied the effects of the reverse electron flow inhibitor rotenone, the UCP1 activity inhibitor GDP, and the uncoupler FCCP. We also examined the effect of a physiologically induced increase in UCP1 amount. We noted GDP effects that were not UCP1-related. We conclude that only ROS production supported by exogenously added succinate was affected by the presence of active UCP1; ROS production supported by any other tested substrate (including endogenously generated succinate) was unaffected. This conclusion indicates that UCP1 is not involved in control of ROS production in brown-fat mitochondria. Extrapolation of these data to other tissues would imply that membrane depolarization may not necessarily decrease physiologically relevant ROS production. This article is a part of a Special Issue entitled: 18th European Bioenergetics Conference (Biochim. Biophys. Acta, Volume 1837, Issue 7, July 2014).
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc15023454
- 003
- CZ-PrNML
- 005
- 20240314093937.0
- 007
- ta
- 008
- 150709s2014 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.bbabio.2014.04.005 $2 doi
- 035 __
- $a (PubMed)24769119
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Shabalina, Irina G $u Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden.
- 245 10
- $a ROS production in brown adipose tissue mitochondria: the question of UCP1-dependence / $c IG. Shabalina, M. Vrbacký, A. Pecinová, AV. Kalinovich, Z. Drahota, J. Houštěk, T. Mráček, B. Cannon, J. Nedergaard,
- 520 9_
- $a Whether active UCP1 can reduce ROS production in brown-fat mitochondria is presently not settled. The issue is of principal significance, as it can be seen as a proof- or disproof-of-principle concerning the ability of any protein to diminish ROS production through membrane depolarization. We therefore undertook a comprehensive investigation of the significance of UCP1 for ROS production, by comparing the ROS production in brown-fat mitochondria isolated from wildtype mice (that display membrane depolarization) or from UCP1(-/-) mice (with a high membrane potential). We tested the significance of UCP1 for glycerol-3-phosphate-supported ROS production by three methods (fluorescent dihydroethidium and the ESR probe PHH for superoxide, and fluorescent Amplex Red for hydrogen peroxide), and followed ROS production also with succinate, acyl-CoA or pyruvate as substrate. We studied the effects of the reverse electron flow inhibitor rotenone, the UCP1 activity inhibitor GDP, and the uncoupler FCCP. We also examined the effect of a physiologically induced increase in UCP1 amount. We noted GDP effects that were not UCP1-related. We conclude that only ROS production supported by exogenously added succinate was affected by the presence of active UCP1; ROS production supported by any other tested substrate (including endogenously generated succinate) was unaffected. This conclusion indicates that UCP1 is not involved in control of ROS production in brown-fat mitochondria. Extrapolation of these data to other tissues would imply that membrane depolarization may not necessarily decrease physiologically relevant ROS production. This article is a part of a Special Issue entitled: 18th European Bioenergetics Conference (Biochim. Biophys. Acta, Volume 1837, Issue 7, July 2014).
- 650 _2
- $a hnědá tuková tkáň $x metabolismus $7 D002001
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a karbonylkyanid-p-trifluormethoxyfenylhydrazon $x farmakologie $7 D002259
- 650 _2
- $a nízká teplota $7 D003080
- 650 _2
- $a elektronová paramagnetická rezonance $7 D004578
- 650 _2
- $a glycerolfosfáty $x farmakologie $7 D005994
- 650 _2
- $a guanosindifosfát $x farmakologie $7 D006153
- 650 _2
- $a peroxid vodíku $x metabolismus $7 D006861
- 650 _2
- $a imunoblotting $7 D015151
- 650 _2
- $a iontové kanály $x genetika $x metabolismus $7 D007473
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a membránový potenciál mitochondrií $x účinky léků $7 D053078
- 650 _2
- $a myši inbrední C57BL $7 D008810
- 650 _2
- $a myši knockoutované $7 D018345
- 650 _2
- $a mitochondrie $x účinky léků $x metabolismus $x fyziologie $7 D008928
- 650 _2
- $a mitochondriální proteiny $x genetika $x metabolismus $7 D024101
- 650 _2
- $a spotřeba kyslíku $x účinky léků $7 D010101
- 650 _2
- $a protonové ionofory $x farmakologie $7 D061209
- 650 _2
- $a kyselina pyrohroznová $x farmakologie $7 D019289
- 650 _2
- $a reaktivní formy kyslíku $x metabolismus $7 D017382
- 650 _2
- $a kyselina jantarová $x farmakologie $7 D019802
- 650 _2
- $a superoxidy $x metabolismus $7 D013481
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Vrbacký, Marek $u Department of Bioenergetics, Institute of Physiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ 142 20 Prague, Czech Republic.
- 700 1_
- $a Pecinová, Alena $u Department of Bioenergetics, Institute of Physiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ 142 20 Prague, Czech Republic.
- 700 1_
- $a Kalinovich, Anastasia V $u Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden.
- 700 1_
- $a Drahota, Zdeněk, $d 1932- $u Department of Bioenergetics, Institute of Physiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ 142 20 Prague, Czech Republic. $7 jn20000400531
- 700 1_
- $a Houštěk, Josef $u Department of Bioenergetics, Institute of Physiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ 142 20 Prague, Czech Republic.
- 700 1_
- $a Mráček, Tomáš $u Department of Bioenergetics, Institute of Physiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ 142 20 Prague, Czech Republic.
- 700 1_
- $a Cannon, Barbara $u Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden. Electronic address: barbara.cannon@su.se.
- 700 1_
- $a Nedergaard, Jan $u Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden.
- 773 0_
- $w MED00009314 $t Biochimica et biophysica acta. Complete edition $x 0006-3002 $g Roč. 1837, č. 12 (2014), s. 2017-30
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/24769119 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20150709 $b ABA008
- 991 __
- $a 20240314093931 $b ABA008
- 999 __
- $a ok $b bmc $g 1083791 $s 906447
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2014 $b 1837 $c 12 $d 2017-30 $i 0006-3002 $m Biochimica et biophysica acta $n Biochim Biophys Acta $x MED00009314 $o Complete edition
- LZP __
- $a Pubmed-20150709