• Je něco špatně v tomto záznamu ?

Curvature correction for microiterative optimizations with QM/MM electronic embedding

TA. Rokob, L. Rulíšek,

. 2012 ; 33 (12) : 1197-206.

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc15023655

One of the most common methods to treat the electrostatic effect of the environment in QM/MM calculations is to include the MM atoms as point charges in the QM Hamiltonian. In this case, a microiterative geometry optimization ignoring the QM contributions to the forces in the relaxation of the environment cannot yield exact stationary points. One solution that has been suggested in the literature is based on using a constant additive correction to the MM gradient during the microiterations, determined in the preceding macroiteration. Here, we analyze the convergence properties of the gradient correction method and point out that a smooth relaxation is not ensured if the curvature of the approximate, MM-based description of the potential energy surface of the environment is too small in comparison with the exact one. We suggest a computationally cheap second-order correction that uses an estimated Hessian from the Davidon-Fletcher-Powell method to tackle the problems caused by the too small curvature. Test calculations on four metalloenzymatic systems (∼100 QM atoms, ∼2000 relaxed MM atoms, ∼20,000 atoms in total) show that our approach efficiently restores the convergence where gradient correction alone would lead to oscillations.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc15023655
003      
CZ-PrNML
005      
20150724111332.0
007      
ta
008      
150709s2012 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1002/jcc.22951 $2 doi
035    __
$a (PubMed)22344958
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Rokob, Tibor András $u Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 16610 Prague, Czech Republic. rokob@uochb.cas.cz.
245    10
$a Curvature correction for microiterative optimizations with QM/MM electronic embedding / $c TA. Rokob, L. Rulíšek,
520    9_
$a One of the most common methods to treat the electrostatic effect of the environment in QM/MM calculations is to include the MM atoms as point charges in the QM Hamiltonian. In this case, a microiterative geometry optimization ignoring the QM contributions to the forces in the relaxation of the environment cannot yield exact stationary points. One solution that has been suggested in the literature is based on using a constant additive correction to the MM gradient during the microiterations, determined in the preceding macroiteration. Here, we analyze the convergence properties of the gradient correction method and point out that a smooth relaxation is not ensured if the curvature of the approximate, MM-based description of the potential energy surface of the environment is too small in comparison with the exact one. We suggest a computationally cheap second-order correction that uses an estimated Hessian from the Davidon-Fletcher-Powell method to tackle the problems caused by the too small curvature. Test calculations on four metalloenzymatic systems (∼100 QM atoms, ∼2000 relaxed MM atoms, ∼20,000 atoms in total) show that our approach efficiently restores the convergence where gradient correction alone would lead to oscillations.
650    _2
$a výpočetní biologie $x metody $7 D019295
650    _2
$a simulace molekulární dynamiky $7 D056004
650    _2
$a kvantová teorie $7 D011789
650    _2
$a software $7 D012984
655    _2
$a časopisecké články $7 D016428
700    1_
$a Rulíšek, Lubomír
773    0_
$w MED00006597 $t Journal of computational chemistry $x 1096-987X $g Roč. 33, č. 12 (2012), s. 1197-206
856    41
$u https://pubmed.ncbi.nlm.nih.gov/22344958 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20150709 $b ABA008
991    __
$a 20150724111411 $b ABA008
999    __
$a ok $b bmc $g 1083992 $s 906648
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2012 $b 33 $c 12 $d 1197-206 $i 1096-987X $m Journal of computational chemistry $n J Comput Chem $x MED00006597
LZP    __
$a Pubmed-20150709

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...