-
Je něco špatně v tomto záznamu ?
Curvature correction for microiterative optimizations with QM/MM electronic embedding
TA. Rokob, L. Rulíšek,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
PubMed
22344958
DOI
10.1002/jcc.22951
Knihovny.cz E-zdroje
- MeSH
- kvantová teorie MeSH
- simulace molekulární dynamiky MeSH
- software MeSH
- výpočetní biologie metody MeSH
- Publikační typ
- časopisecké články MeSH
One of the most common methods to treat the electrostatic effect of the environment in QM/MM calculations is to include the MM atoms as point charges in the QM Hamiltonian. In this case, a microiterative geometry optimization ignoring the QM contributions to the forces in the relaxation of the environment cannot yield exact stationary points. One solution that has been suggested in the literature is based on using a constant additive correction to the MM gradient during the microiterations, determined in the preceding macroiteration. Here, we analyze the convergence properties of the gradient correction method and point out that a smooth relaxation is not ensured if the curvature of the approximate, MM-based description of the potential energy surface of the environment is too small in comparison with the exact one. We suggest a computationally cheap second-order correction that uses an estimated Hessian from the Davidon-Fletcher-Powell method to tackle the problems caused by the too small curvature. Test calculations on four metalloenzymatic systems (∼100 QM atoms, ∼2000 relaxed MM atoms, ∼20,000 atoms in total) show that our approach efficiently restores the convergence where gradient correction alone would lead to oscillations.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc15023655
- 003
- CZ-PrNML
- 005
- 20150724111332.0
- 007
- ta
- 008
- 150709s2012 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/jcc.22951 $2 doi
- 035 __
- $a (PubMed)22344958
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Rokob, Tibor András $u Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 16610 Prague, Czech Republic. rokob@uochb.cas.cz.
- 245 10
- $a Curvature correction for microiterative optimizations with QM/MM electronic embedding / $c TA. Rokob, L. Rulíšek,
- 520 9_
- $a One of the most common methods to treat the electrostatic effect of the environment in QM/MM calculations is to include the MM atoms as point charges in the QM Hamiltonian. In this case, a microiterative geometry optimization ignoring the QM contributions to the forces in the relaxation of the environment cannot yield exact stationary points. One solution that has been suggested in the literature is based on using a constant additive correction to the MM gradient during the microiterations, determined in the preceding macroiteration. Here, we analyze the convergence properties of the gradient correction method and point out that a smooth relaxation is not ensured if the curvature of the approximate, MM-based description of the potential energy surface of the environment is too small in comparison with the exact one. We suggest a computationally cheap second-order correction that uses an estimated Hessian from the Davidon-Fletcher-Powell method to tackle the problems caused by the too small curvature. Test calculations on four metalloenzymatic systems (∼100 QM atoms, ∼2000 relaxed MM atoms, ∼20,000 atoms in total) show that our approach efficiently restores the convergence where gradient correction alone would lead to oscillations.
- 650 _2
- $a výpočetní biologie $x metody $7 D019295
- 650 _2
- $a simulace molekulární dynamiky $7 D056004
- 650 _2
- $a kvantová teorie $7 D011789
- 650 _2
- $a software $7 D012984
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Rulíšek, Lubomír
- 773 0_
- $w MED00006597 $t Journal of computational chemistry $x 1096-987X $g Roč. 33, č. 12 (2012), s. 1197-206
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/22344958 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20150709 $b ABA008
- 991 __
- $a 20150724111411 $b ABA008
- 999 __
- $a ok $b bmc $g 1083992 $s 906648
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2012 $b 33 $c 12 $d 1197-206 $i 1096-987X $m Journal of computational chemistry $n J Comput Chem $x MED00006597
- LZP __
- $a Pubmed-20150709