• Je něco špatně v tomto záznamu ?

A refined atomic scale model of the Saccharomyces cerevisiae K+-translocation protein Trk1p combined with experimental evidence confirms the role of selectivity filter glycines and other key residues

V. Zayats, T. Stockner, SK. Pandey, K. Wörz, R. Ettrich, J. Ludwig,

. 2015 ; 1848 (5) : 1183-95. [pub] 20150214

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc15031462

Potassium ion (K+) uptake in yeast is mediated mainly by the Trk1/2 proteins that enable cells to survive on external K+ concentration as low as a few μM. Fungal Trks are related to prokaryotic TRK and Ktr and plant HKT K+ transport systems. Overall sequence similarity is very low, thus requiring experimental verification of homology models. Here a refined structural model of the Saccharomyces cerevisiae Trk1 is presented that was obtained by combining homology modeling, molecular dynamics simulation and experimental verification through functional analysis of mutants. Structural models and experimental results showed that glycines within the selectivity filter, conserved among the K-channel/transporter family, are not only important for protein function, but are also required for correct folding/membrane targeting. A conserved aspartic acid in the PA helix (D79) and a lysine in the M2D helix (K1147) were proposed earlier to interact. Our results suggested individual roles of these residues in folding, structural integrity and function. While mutations of D79 completely abolished protein folding, mutations at position 1147 were tolerated to some extent. Intriguingly, a secondary interaction of D79 with R76 could enhance folding/stability of Trk1 and enable a fraction of Trk1[K1147A] to fold. The part of the ion permeation path containing the selectivity filter is shaped similar to that of ion channels. However below the selectivity filter it is obstructed or regulated by a proline containing loop. The presented model could provide the structural basis for addressing the long standing question if Trk1 is a passive or active ion-translocation system.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc15031462
003      
CZ-PrNML
005      
20151005124434.0
007      
ta
008      
151005s2015 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.bbamem.2015.02.007 $2 doi
035    __
$a (PubMed)25687974
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Zayats, Vasilina $u Institute of Nanobiology and Structural Biology, Global Change Research Center, Academy of Sciences of the Czech Republic, Nove Hrady, Czech Republic; Faculty of Sciences, University of South Bohemia, Nove Hrady, Czech Republic.
245    12
$a A refined atomic scale model of the Saccharomyces cerevisiae K+-translocation protein Trk1p combined with experimental evidence confirms the role of selectivity filter glycines and other key residues / $c V. Zayats, T. Stockner, SK. Pandey, K. Wörz, R. Ettrich, J. Ludwig,
520    9_
$a Potassium ion (K+) uptake in yeast is mediated mainly by the Trk1/2 proteins that enable cells to survive on external K+ concentration as low as a few μM. Fungal Trks are related to prokaryotic TRK and Ktr and plant HKT K+ transport systems. Overall sequence similarity is very low, thus requiring experimental verification of homology models. Here a refined structural model of the Saccharomyces cerevisiae Trk1 is presented that was obtained by combining homology modeling, molecular dynamics simulation and experimental verification through functional analysis of mutants. Structural models and experimental results showed that glycines within the selectivity filter, conserved among the K-channel/transporter family, are not only important for protein function, but are also required for correct folding/membrane targeting. A conserved aspartic acid in the PA helix (D79) and a lysine in the M2D helix (K1147) were proposed earlier to interact. Our results suggested individual roles of these residues in folding, structural integrity and function. While mutations of D79 completely abolished protein folding, mutations at position 1147 were tolerated to some extent. Intriguingly, a secondary interaction of D79 with R76 could enhance folding/stability of Trk1 and enable a fraction of Trk1[K1147A] to fold. The part of the ion permeation path containing the selectivity filter is shaped similar to that of ion channels. However below the selectivity filter it is obstructed or regulated by a proline containing loop. The presented model could provide the structural basis for addressing the long standing question if Trk1 is a passive or active ion-translocation system.
650    _2
$a sekvence aminokyselin $7 D000595
650    _2
$a kyselina asparagová $7 D001224
650    _2
$a proteiny přenášející kationty $x chemie $x genetika $x metabolismus $7 D027682
650    _2
$a buněčná membrána $x chemie $x metabolismus $7 D002462
650    _2
$a permeabilita buněčné membrány $7 D002463
650    _2
$a výpočetní biologie $7 D019295
650    _2
$a konzervovaná sekvence $7 D017124
650    _2
$a glycin $7 D005998
650    12
$a gating iontového kanálu $7 D015640
650    _2
$a kinetika $7 D007700
650    _2
$a lysin $7 D008239
650    _2
$a simulace molekulární dynamiky $7 D056004
650    _2
$a molekulární sekvence - údaje $7 D008969
650    _2
$a mutageneze cílená $7 D016297
650    _2
$a mutace $7 D009154
650    _2
$a draslík $x metabolismus $7 D011188
650    _2
$a konformace proteinů $7 D011487
650    _2
$a sbalování proteinů $7 D017510
650    _2
$a stabilita proteinů $7 D055550
650    _2
$a Saccharomyces cerevisiae - proteiny $x chemie $x genetika $x metabolismus $7 D029701
650    _2
$a vztahy mezi strukturou a aktivitou $7 D013329
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Stockner, Thomas $u Institute of Pharmacology, Medical University of Vienna, Vienna, Austria.
700    1_
$a Pandey, Saurabh Kumar $u Institute of Nanobiology and Structural Biology, Global Change Research Center, Academy of Sciences of the Czech Republic, Nove Hrady, Czech Republic; Faculty of Sciences, University of South Bohemia, Nove Hrady, Czech Republic.
700    1_
$a Wörz, Katharina $u Molecular Bioenergetics, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany.
700    1_
$a Ettrich, Rüdiger $u Institute of Nanobiology and Structural Biology, Global Change Research Center, Academy of Sciences of the Czech Republic, Nove Hrady, Czech Republic; Faculty of Sciences, University of South Bohemia, Nove Hrady, Czech Republic. Electronic address: ettrich@nh.cas.cz.
700    1_
$a Ludwig, Jost $u Institute of Nanobiology and Structural Biology, Global Change Research Center, Academy of Sciences of the Czech Republic, Nove Hrady, Czech Republic; Molecular Bioenergetics, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany. Electronic address: jost.ludwig@uni-bonn.de.
773    0_
$w MED00009314 $t Biochimica et biophysica acta $x 0006-3002 $g Roč. 1848, č. 5 (2015), s. 1183-95
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25687974 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20151005 $b ABA008
991    __
$a 20151005124618 $b ABA008
999    __
$a ok $b bmc $g 1092338 $s 914588
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 1848 $c 5 $d 1183-95 $e 20150214 $i 0006-3002 $m Biochimica et biophysica acta $n Biochim Biophys Acta $x MED00009314
LZP    __
$a Pubmed-20151005

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...