-
Je něco špatně v tomto záznamu ?
A refined atomic scale model of the Saccharomyces cerevisiae K+-translocation protein Trk1p combined with experimental evidence confirms the role of selectivity filter glycines and other key residues
V. Zayats, T. Stockner, SK. Pandey, K. Wörz, R. Ettrich, J. Ludwig,
Jazyk angličtina Země Nizozemsko
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- buněčná membrána chemie metabolismus MeSH
- draslík metabolismus MeSH
- gating iontového kanálu * MeSH
- glycin MeSH
- kinetika MeSH
- konformace proteinů MeSH
- konzervovaná sekvence MeSH
- kyselina asparagová MeSH
- lysin MeSH
- molekulární sekvence - údaje MeSH
- mutace MeSH
- mutageneze cílená MeSH
- permeabilita buněčné membrány MeSH
- proteiny přenášející kationty chemie genetika metabolismus MeSH
- Saccharomyces cerevisiae - proteiny chemie genetika metabolismus MeSH
- sbalování proteinů MeSH
- sekvence aminokyselin MeSH
- simulace molekulární dynamiky MeSH
- stabilita proteinů MeSH
- výpočetní biologie MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Potassium ion (K+) uptake in yeast is mediated mainly by the Trk1/2 proteins that enable cells to survive on external K+ concentration as low as a few μM. Fungal Trks are related to prokaryotic TRK and Ktr and plant HKT K+ transport systems. Overall sequence similarity is very low, thus requiring experimental verification of homology models. Here a refined structural model of the Saccharomyces cerevisiae Trk1 is presented that was obtained by combining homology modeling, molecular dynamics simulation and experimental verification through functional analysis of mutants. Structural models and experimental results showed that glycines within the selectivity filter, conserved among the K-channel/transporter family, are not only important for protein function, but are also required for correct folding/membrane targeting. A conserved aspartic acid in the PA helix (D79) and a lysine in the M2D helix (K1147) were proposed earlier to interact. Our results suggested individual roles of these residues in folding, structural integrity and function. While mutations of D79 completely abolished protein folding, mutations at position 1147 were tolerated to some extent. Intriguingly, a secondary interaction of D79 with R76 could enhance folding/stability of Trk1 and enable a fraction of Trk1[K1147A] to fold. The part of the ion permeation path containing the selectivity filter is shaped similar to that of ion channels. However below the selectivity filter it is obstructed or regulated by a proline containing loop. The presented model could provide the structural basis for addressing the long standing question if Trk1 is a passive or active ion-translocation system.
Faculty of Sciences University of South Bohemia Nove Hrady Czech Republic
Institute of Pharmacology Medical University of Vienna Vienna Austria
Molecular Bioenergetics Institute of Cellular and Molecular Botany University of Bonn Bonn Germany
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc15031462
- 003
- CZ-PrNML
- 005
- 20151005124434.0
- 007
- ta
- 008
- 151005s2015 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.bbamem.2015.02.007 $2 doi
- 035 __
- $a (PubMed)25687974
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Zayats, Vasilina $u Institute of Nanobiology and Structural Biology, Global Change Research Center, Academy of Sciences of the Czech Republic, Nove Hrady, Czech Republic; Faculty of Sciences, University of South Bohemia, Nove Hrady, Czech Republic.
- 245 12
- $a A refined atomic scale model of the Saccharomyces cerevisiae K+-translocation protein Trk1p combined with experimental evidence confirms the role of selectivity filter glycines and other key residues / $c V. Zayats, T. Stockner, SK. Pandey, K. Wörz, R. Ettrich, J. Ludwig,
- 520 9_
- $a Potassium ion (K+) uptake in yeast is mediated mainly by the Trk1/2 proteins that enable cells to survive on external K+ concentration as low as a few μM. Fungal Trks are related to prokaryotic TRK and Ktr and plant HKT K+ transport systems. Overall sequence similarity is very low, thus requiring experimental verification of homology models. Here a refined structural model of the Saccharomyces cerevisiae Trk1 is presented that was obtained by combining homology modeling, molecular dynamics simulation and experimental verification through functional analysis of mutants. Structural models and experimental results showed that glycines within the selectivity filter, conserved among the K-channel/transporter family, are not only important for protein function, but are also required for correct folding/membrane targeting. A conserved aspartic acid in the PA helix (D79) and a lysine in the M2D helix (K1147) were proposed earlier to interact. Our results suggested individual roles of these residues in folding, structural integrity and function. While mutations of D79 completely abolished protein folding, mutations at position 1147 were tolerated to some extent. Intriguingly, a secondary interaction of D79 with R76 could enhance folding/stability of Trk1 and enable a fraction of Trk1[K1147A] to fold. The part of the ion permeation path containing the selectivity filter is shaped similar to that of ion channels. However below the selectivity filter it is obstructed or regulated by a proline containing loop. The presented model could provide the structural basis for addressing the long standing question if Trk1 is a passive or active ion-translocation system.
- 650 _2
- $a sekvence aminokyselin $7 D000595
- 650 _2
- $a kyselina asparagová $7 D001224
- 650 _2
- $a proteiny přenášející kationty $x chemie $x genetika $x metabolismus $7 D027682
- 650 _2
- $a buněčná membrána $x chemie $x metabolismus $7 D002462
- 650 _2
- $a permeabilita buněčné membrány $7 D002463
- 650 _2
- $a výpočetní biologie $7 D019295
- 650 _2
- $a konzervovaná sekvence $7 D017124
- 650 _2
- $a glycin $7 D005998
- 650 12
- $a gating iontového kanálu $7 D015640
- 650 _2
- $a kinetika $7 D007700
- 650 _2
- $a lysin $7 D008239
- 650 _2
- $a simulace molekulární dynamiky $7 D056004
- 650 _2
- $a molekulární sekvence - údaje $7 D008969
- 650 _2
- $a mutageneze cílená $7 D016297
- 650 _2
- $a mutace $7 D009154
- 650 _2
- $a draslík $x metabolismus $7 D011188
- 650 _2
- $a konformace proteinů $7 D011487
- 650 _2
- $a sbalování proteinů $7 D017510
- 650 _2
- $a stabilita proteinů $7 D055550
- 650 _2
- $a Saccharomyces cerevisiae - proteiny $x chemie $x genetika $x metabolismus $7 D029701
- 650 _2
- $a vztahy mezi strukturou a aktivitou $7 D013329
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Stockner, Thomas $u Institute of Pharmacology, Medical University of Vienna, Vienna, Austria.
- 700 1_
- $a Pandey, Saurabh Kumar $u Institute of Nanobiology and Structural Biology, Global Change Research Center, Academy of Sciences of the Czech Republic, Nove Hrady, Czech Republic; Faculty of Sciences, University of South Bohemia, Nove Hrady, Czech Republic.
- 700 1_
- $a Wörz, Katharina $u Molecular Bioenergetics, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany.
- 700 1_
- $a Ettrich, Rüdiger $u Institute of Nanobiology and Structural Biology, Global Change Research Center, Academy of Sciences of the Czech Republic, Nove Hrady, Czech Republic; Faculty of Sciences, University of South Bohemia, Nove Hrady, Czech Republic. Electronic address: ettrich@nh.cas.cz.
- 700 1_
- $a Ludwig, Jost $u Institute of Nanobiology and Structural Biology, Global Change Research Center, Academy of Sciences of the Czech Republic, Nove Hrady, Czech Republic; Molecular Bioenergetics, Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany. Electronic address: jost.ludwig@uni-bonn.de.
- 773 0_
- $w MED00009314 $t Biochimica et biophysica acta $x 0006-3002 $g Roč. 1848, č. 5 (2015), s. 1183-95
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25687974 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20151005 $b ABA008
- 991 __
- $a 20151005124618 $b ABA008
- 999 __
- $a ok $b bmc $g 1092338 $s 914588
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 1848 $c 5 $d 1183-95 $e 20150214 $i 0006-3002 $m Biochimica et biophysica acta $n Biochim Biophys Acta $x MED00009314
- LZP __
- $a Pubmed-20151005