• Something wrong with this record ?

Polyethylenimine architecture-dependent metabolic imprints and perturbation of cellular redox homeostasis

A. Hall, L. Parhamifar, MK. Lange, KD. Meyle, M. Sanderhoff, H. Andersen, M. Roursgaard, AK. Larsen, PB. Jensen, C. Christensen, J. Bartek, SM. Moghimi,

. 2015 ; 1847 (3) : 328-42. [pub] 20141205

Language English Country Netherlands

Document type Comparative Study, Journal Article, Research Support, Non-U.S. Gov't

Polyethylenimines (PEIs) are among the most efficient polycationic non-viral transfectants. PEI architecture and size not only modulate transfection efficiency, but also cytotoxicity. However, the underlying mechanisms of PEI-induced multifaceted cell damage and death are largely unknown. Here, we demonstrate that the central mechanisms of PEI architecture- and size-dependent perturbations of integrated cellular metabolomics involve destabilization of plasma membrane and mitochondrial membranes with consequences on mitochondrial oxidative phosphorylation (OXPHOS), glycolytic flux and redox homeostasis that ultimately modulate cell death. In comparison to linear PEI, the branched architectures induced greater plasma membrane destabilization and were more detrimental to glycolytic activity and OXPHOS capacity as well as being a more potent inhibitor of the cytochrome c oxidase. Accordingly, the branched architectures caused a greater lactate dehydrogenase (LDH) and ATP depletion, activated AMP kinase (AMPK) and disturbed redox homeostasis through diminished availability of nicotinamide adenine dinucleotide phosphate (NADPH), reduced antioxidant capacity of glutathione (GSH) and increased burden of reactive oxygen species (ROS). The differences in metabolic and redox imprints were further reflected in the transfection performance of the polycations, but co-treatment with the GSH precursor N-acetyl-cysteine (NAC) counteracted redox dysregulation and increased the number of viable transfected cells. Integrated biomembrane integrity and metabolomic analysis provides a rapid approach for mechanistic understanding of multifactorial polycation-mediated cytotoxicity, and could form the basis for combinatorial throughput platforms for improved design and selection of safer polymeric vectors.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc15031614
003      
CZ-PrNML
005      
20250506132555.0
007      
ta
008      
151005s2015 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.bbabio.2014.12.002 $2 doi
035    __
$a (PubMed)25482261
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Hall, Arnaldur $u Nanomedicine Research Group and Centre for Pharmaceutical Nanotechnology and Nanotoxicology, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark; NanoScience Centre, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark; Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark. Electronic address: arnaldur.hall@sund.ku.dk.
245    10
$a Polyethylenimine architecture-dependent metabolic imprints and perturbation of cellular redox homeostasis / $c A. Hall, L. Parhamifar, MK. Lange, KD. Meyle, M. Sanderhoff, H. Andersen, M. Roursgaard, AK. Larsen, PB. Jensen, C. Christensen, J. Bartek, SM. Moghimi,
520    9_
$a Polyethylenimines (PEIs) are among the most efficient polycationic non-viral transfectants. PEI architecture and size not only modulate transfection efficiency, but also cytotoxicity. However, the underlying mechanisms of PEI-induced multifaceted cell damage and death are largely unknown. Here, we demonstrate that the central mechanisms of PEI architecture- and size-dependent perturbations of integrated cellular metabolomics involve destabilization of plasma membrane and mitochondrial membranes with consequences on mitochondrial oxidative phosphorylation (OXPHOS), glycolytic flux and redox homeostasis that ultimately modulate cell death. In comparison to linear PEI, the branched architectures induced greater plasma membrane destabilization and were more detrimental to glycolytic activity and OXPHOS capacity as well as being a more potent inhibitor of the cytochrome c oxidase. Accordingly, the branched architectures caused a greater lactate dehydrogenase (LDH) and ATP depletion, activated AMP kinase (AMPK) and disturbed redox homeostasis through diminished availability of nicotinamide adenine dinucleotide phosphate (NADPH), reduced antioxidant capacity of glutathione (GSH) and increased burden of reactive oxygen species (ROS). The differences in metabolic and redox imprints were further reflected in the transfection performance of the polycations, but co-treatment with the GSH precursor N-acetyl-cysteine (NAC) counteracted redox dysregulation and increased the number of viable transfected cells. Integrated biomembrane integrity and metabolomic analysis provides a rapid approach for mechanistic understanding of multifactorial polycation-mediated cytotoxicity, and could form the basis for combinatorial throughput platforms for improved design and selection of safer polymeric vectors.
650    _2
$a adenosintrifosfát $x metabolismus $7 D000255
650    _2
$a antioxidancia $x metabolismus $x farmakologie $7 D000975
650    _2
$a buněčné linie $7 D002460
650    _2
$a buněčná membrána $x účinky léků $x metabolismus $7 D002462
650    _2
$a buněčné dýchání $x účinky léků $7 D019069
650    _2
$a viabilita buněk $x účinky léků $7 D002470
650    _2
$a vztah mezi dávkou a účinkem léčiva $7 D004305
650    _2
$a energetický metabolismus $x účinky léků $7 D004734
650    _2
$a glutathion $x metabolismus $7 D005978
650    _2
$a homeostáza $7 D006706
650    _2
$a lidé $7 D006801
650    _2
$a kinetika $7 D007700
650    _2
$a mitochondriální membrány $x účinky léků $x metabolismus $7 D051336
650    _2
$a molekulární struktura $7 D015394
650    _2
$a molekulová hmotnost $7 D008970
650    _2
$a oxidace-redukce $7 D010084
650    _2
$a oxidační stres $x účinky léků $7 D018384
650    _2
$a spotřeba kyslíku $x účinky léků $7 D010101
650    _2
$a polyethylenimin $x chemie $x toxicita $7 D011094
650    _2
$a reaktivní formy kyslíku $x metabolismus $7 D017382
650    _2
$a vztahy mezi strukturou a aktivitou $7 D013329
650    _2
$a transfekce $x metody $7 D014162
655    _2
$a srovnávací studie $7 D003160
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Parhamifar, Ladan $u Nanomedicine Research Group and Centre for Pharmaceutical Nanotechnology and Nanotoxicology, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark; NanoScience Centre, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark.
700    1_
$a Lange, Marina Krarup $u Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark.
700    1_
$a Meyle, Kathrine Damm $u Institute of Preventive Medicine, Bispebjerg and Frederiksberg Hospitals, The Capital Region, Copenhagen, Denmark.
700    1_
$a Sanderhoff, May $u Seahorse Bioscience Europa, Copenhagen, Denmark.
700    1_
$a Andersen, Helene $u Nanomedicine Research Group and Centre for Pharmaceutical Nanotechnology and Nanotoxicology, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark; NanoScience Centre, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark. $7 gn_A_00006066
700    1_
$a Roursgaard, Martin $u Section of Environmental Health, Department of Public Health, University of Copenhagen, DK-1014 Copenhagen K, Denmark.
700    1_
$a Larsen, Anna Karina $u Nanomedicine Research Group and Centre for Pharmaceutical Nanotechnology and Nanotoxicology, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark; NanoScience Centre, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark.
700    1_
$a Jensen, Per Bo $u Seahorse Bioscience Europa, Copenhagen, Denmark.
700    1_
$a Christensen, Claus $u Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark.
700    1_
$a Bártek, Jiří, $d 1953- $u Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, CZ-775 15 Olomouc, Czech Republic. $7 xx0046271
700    1_
$a Moghimi, Seyed Moein $u Nanomedicine Research Group and Centre for Pharmaceutical Nanotechnology and Nanotoxicology, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark; NanoScience Centre, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark. Electronic address: moien.moghimi@sund.ku.dk.
773    0_
$w MED00009314 $t Biochimica et biophysica acta $x 0006-3002 $g Roč. 1847, č. 3 (2015), s. 328-42
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25482261 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20151005 $b ABA008
991    __
$a 20250506132554 $b ABA008
999    __
$a ok $b bmc $g 1092490 $s 914740
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 1847 $c 3 $d 328-42 $e 20141205 $i 0006-3002 $m Biochimica et biophysica acta $n Biochim Biophys Acta $x MED00009314
LZP    __
$a Pubmed-20151005

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...