-
Something wrong with this record ?
Polyethylenimine architecture-dependent metabolic imprints and perturbation of cellular redox homeostasis
A. Hall, L. Parhamifar, MK. Lange, KD. Meyle, M. Sanderhoff, H. Andersen, M. Roursgaard, AK. Larsen, PB. Jensen, C. Christensen, J. Bartek, SM. Moghimi,
Language English Country Netherlands
Document type Comparative Study, Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Adenosine Triphosphate metabolism MeSH
- Antioxidants metabolism pharmacology MeSH
- Cell Membrane drug effects metabolism MeSH
- Cell Respiration drug effects MeSH
- Cell Line MeSH
- Energy Metabolism drug effects MeSH
- Glutathione metabolism MeSH
- Homeostasis MeSH
- Kinetics MeSH
- Humans MeSH
- Mitochondrial Membranes drug effects metabolism MeSH
- Molecular Structure MeSH
- Molecular Weight MeSH
- Oxidation-Reduction MeSH
- Oxidative Stress drug effects MeSH
- Polyethyleneimine chemistry toxicity MeSH
- Reactive Oxygen Species metabolism MeSH
- Oxygen Consumption drug effects MeSH
- Transfection methods MeSH
- Cell Survival drug effects MeSH
- Dose-Response Relationship, Drug MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Comparative Study MeSH
Polyethylenimines (PEIs) are among the most efficient polycationic non-viral transfectants. PEI architecture and size not only modulate transfection efficiency, but also cytotoxicity. However, the underlying mechanisms of PEI-induced multifaceted cell damage and death are largely unknown. Here, we demonstrate that the central mechanisms of PEI architecture- and size-dependent perturbations of integrated cellular metabolomics involve destabilization of plasma membrane and mitochondrial membranes with consequences on mitochondrial oxidative phosphorylation (OXPHOS), glycolytic flux and redox homeostasis that ultimately modulate cell death. In comparison to linear PEI, the branched architectures induced greater plasma membrane destabilization and were more detrimental to glycolytic activity and OXPHOS capacity as well as being a more potent inhibitor of the cytochrome c oxidase. Accordingly, the branched architectures caused a greater lactate dehydrogenase (LDH) and ATP depletion, activated AMP kinase (AMPK) and disturbed redox homeostasis through diminished availability of nicotinamide adenine dinucleotide phosphate (NADPH), reduced antioxidant capacity of glutathione (GSH) and increased burden of reactive oxygen species (ROS). The differences in metabolic and redox imprints were further reflected in the transfection performance of the polycations, but co-treatment with the GSH precursor N-acetyl-cysteine (NAC) counteracted redox dysregulation and increased the number of viable transfected cells. Integrated biomembrane integrity and metabolomic analysis provides a rapid approach for mechanistic understanding of multifactorial polycation-mediated cytotoxicity, and could form the basis for combinatorial throughput platforms for improved design and selection of safer polymeric vectors.
Genome Integrity Unit Danish Cancer Society Research Center Copenhagen Denmark
NanoScience Centre University of Copenhagen Universitetsparken 5 DK 2100 Copenhagen Ø Denmark
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc15031614
- 003
- CZ-PrNML
- 005
- 20250506132555.0
- 007
- ta
- 008
- 151005s2015 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.bbabio.2014.12.002 $2 doi
- 035 __
- $a (PubMed)25482261
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Hall, Arnaldur $u Nanomedicine Research Group and Centre for Pharmaceutical Nanotechnology and Nanotoxicology, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark; NanoScience Centre, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark; Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark. Electronic address: arnaldur.hall@sund.ku.dk.
- 245 10
- $a Polyethylenimine architecture-dependent metabolic imprints and perturbation of cellular redox homeostasis / $c A. Hall, L. Parhamifar, MK. Lange, KD. Meyle, M. Sanderhoff, H. Andersen, M. Roursgaard, AK. Larsen, PB. Jensen, C. Christensen, J. Bartek, SM. Moghimi,
- 520 9_
- $a Polyethylenimines (PEIs) are among the most efficient polycationic non-viral transfectants. PEI architecture and size not only modulate transfection efficiency, but also cytotoxicity. However, the underlying mechanisms of PEI-induced multifaceted cell damage and death are largely unknown. Here, we demonstrate that the central mechanisms of PEI architecture- and size-dependent perturbations of integrated cellular metabolomics involve destabilization of plasma membrane and mitochondrial membranes with consequences on mitochondrial oxidative phosphorylation (OXPHOS), glycolytic flux and redox homeostasis that ultimately modulate cell death. In comparison to linear PEI, the branched architectures induced greater plasma membrane destabilization and were more detrimental to glycolytic activity and OXPHOS capacity as well as being a more potent inhibitor of the cytochrome c oxidase. Accordingly, the branched architectures caused a greater lactate dehydrogenase (LDH) and ATP depletion, activated AMP kinase (AMPK) and disturbed redox homeostasis through diminished availability of nicotinamide adenine dinucleotide phosphate (NADPH), reduced antioxidant capacity of glutathione (GSH) and increased burden of reactive oxygen species (ROS). The differences in metabolic and redox imprints were further reflected in the transfection performance of the polycations, but co-treatment with the GSH precursor N-acetyl-cysteine (NAC) counteracted redox dysregulation and increased the number of viable transfected cells. Integrated biomembrane integrity and metabolomic analysis provides a rapid approach for mechanistic understanding of multifactorial polycation-mediated cytotoxicity, and could form the basis for combinatorial throughput platforms for improved design and selection of safer polymeric vectors.
- 650 _2
- $a adenosintrifosfát $x metabolismus $7 D000255
- 650 _2
- $a antioxidancia $x metabolismus $x farmakologie $7 D000975
- 650 _2
- $a buněčné linie $7 D002460
- 650 _2
- $a buněčná membrána $x účinky léků $x metabolismus $7 D002462
- 650 _2
- $a buněčné dýchání $x účinky léků $7 D019069
- 650 _2
- $a viabilita buněk $x účinky léků $7 D002470
- 650 _2
- $a vztah mezi dávkou a účinkem léčiva $7 D004305
- 650 _2
- $a energetický metabolismus $x účinky léků $7 D004734
- 650 _2
- $a glutathion $x metabolismus $7 D005978
- 650 _2
- $a homeostáza $7 D006706
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a kinetika $7 D007700
- 650 _2
- $a mitochondriální membrány $x účinky léků $x metabolismus $7 D051336
- 650 _2
- $a molekulární struktura $7 D015394
- 650 _2
- $a molekulová hmotnost $7 D008970
- 650 _2
- $a oxidace-redukce $7 D010084
- 650 _2
- $a oxidační stres $x účinky léků $7 D018384
- 650 _2
- $a spotřeba kyslíku $x účinky léků $7 D010101
- 650 _2
- $a polyethylenimin $x chemie $x toxicita $7 D011094
- 650 _2
- $a reaktivní formy kyslíku $x metabolismus $7 D017382
- 650 _2
- $a vztahy mezi strukturou a aktivitou $7 D013329
- 650 _2
- $a transfekce $x metody $7 D014162
- 655 _2
- $a srovnávací studie $7 D003160
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Parhamifar, Ladan $u Nanomedicine Research Group and Centre for Pharmaceutical Nanotechnology and Nanotoxicology, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark; NanoScience Centre, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark.
- 700 1_
- $a Lange, Marina Krarup $u Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark.
- 700 1_
- $a Meyle, Kathrine Damm $u Institute of Preventive Medicine, Bispebjerg and Frederiksberg Hospitals, The Capital Region, Copenhagen, Denmark.
- 700 1_
- $a Sanderhoff, May $u Seahorse Bioscience Europa, Copenhagen, Denmark.
- 700 1_
- $a Andersen, Helene $u Nanomedicine Research Group and Centre for Pharmaceutical Nanotechnology and Nanotoxicology, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark; NanoScience Centre, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark. $7 gn_A_00006066
- 700 1_
- $a Roursgaard, Martin $u Section of Environmental Health, Department of Public Health, University of Copenhagen, DK-1014 Copenhagen K, Denmark.
- 700 1_
- $a Larsen, Anna Karina $u Nanomedicine Research Group and Centre for Pharmaceutical Nanotechnology and Nanotoxicology, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark; NanoScience Centre, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark.
- 700 1_
- $a Jensen, Per Bo $u Seahorse Bioscience Europa, Copenhagen, Denmark.
- 700 1_
- $a Christensen, Claus $u Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark.
- 700 1_
- $a Bártek, Jiří, $d 1953- $u Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, CZ-775 15 Olomouc, Czech Republic. $7 xx0046271
- 700 1_
- $a Moghimi, Seyed Moein $u Nanomedicine Research Group and Centre for Pharmaceutical Nanotechnology and Nanotoxicology, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark; NanoScience Centre, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark. Electronic address: moien.moghimi@sund.ku.dk.
- 773 0_
- $w MED00009314 $t Biochimica et biophysica acta $x 0006-3002 $g Roč. 1847, č. 3 (2015), s. 328-42
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25482261 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20151005 $b ABA008
- 991 __
- $a 20250506132554 $b ABA008
- 999 __
- $a ok $b bmc $g 1092490 $s 914740
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 1847 $c 3 $d 328-42 $e 20141205 $i 0006-3002 $m Biochimica et biophysica acta $n Biochim Biophys Acta $x MED00009314
- LZP __
- $a Pubmed-20151005