Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Altered astrocytic swelling in the cortex of α-syntrophin-negative GFAP/EGFP mice

M. Anderova, J. Benesova, M. Mikesova, D. Dzamba, P. Honsa, J. Kriska, O. Butenko, V. Novosadova, L. Valihrach, M. Kubista, L. Dmytrenko, M. Cicanic, L. Vargova,

. 2014 ; 9 (11) : e113444. [pub] 20141126

Language English Country United States

Document type Journal Article, Research Support, Non-U.S. Gov't

Brain edema accompanying ischemic or traumatic brain injuries, originates from a disruption of ionic/neurotransmitter homeostasis that leads to accumulation of K(+) and glutamate in the extracellular space. Their increased uptake, predominantly provided by astrocytes, is associated with water influx via aquaporin-4 (AQP4). As the removal of perivascular AQP4 via the deletion of α-syntrophin was shown to delay edema formation and K(+) clearance, we aimed to elucidate the impact of α-syntrophin knockout on volume changes in individual astrocytes in situ evoked by pathological stimuli using three dimensional confocal morphometry and changes in the extracellular space volume fraction (α) in situ and in vivo in the mouse cortex employing the real-time iontophoretic method. RT-qPCR profiling was used to reveal possible differences in the expression of ion channels/transporters that participate in maintaining ionic/neurotransmitter homeostasis. To visualize individual astrocytes in mice lacking α-syntrophin we crossbred GFAP/EGFP mice, in which the astrocytes are labeled by the enhanced green fluorescent protein under the human glial fibrillary acidic protein promoter, with α-syntrophin knockout mice. Three-dimensional confocal morphometry revealed that α-syntrophin deletion results in significantly smaller astrocyte swelling when induced by severe hypoosmotic stress, oxygen glucose deprivation (OGD) or 50 mM K(+). As for the mild stimuli, such as mild hypoosmotic or hyperosmotic stress or 10 mM K(+), α-syntrophin deletion had no effect on astrocyte swelling. Similarly, evaluation of relative α changes showed a significantly smaller decrease in α-syntrophin knockout mice only during severe pathological conditions, but not during mild stimuli. In summary, the deletion of α-syntrophin markedly alters astrocyte swelling during severe hypoosmotic stress, OGD or high K(+).

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc15031700
003      
CZ-PrNML
005      
20151005124747.0
007      
ta
008      
151005s2014 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1371/journal.pone.0113444 $2 doi
035    __
$a (PubMed)25426721
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Anderova, Miroslava $u Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic; Department of Neuroscience, Charles University, 2nd Faculty of Medicine, Prague, Czech Republic. $7 gn_A_00006037
245    10
$a Altered astrocytic swelling in the cortex of α-syntrophin-negative GFAP/EGFP mice / $c M. Anderova, J. Benesova, M. Mikesova, D. Dzamba, P. Honsa, J. Kriska, O. Butenko, V. Novosadova, L. Valihrach, M. Kubista, L. Dmytrenko, M. Cicanic, L. Vargova,
520    9_
$a Brain edema accompanying ischemic or traumatic brain injuries, originates from a disruption of ionic/neurotransmitter homeostasis that leads to accumulation of K(+) and glutamate in the extracellular space. Their increased uptake, predominantly provided by astrocytes, is associated with water influx via aquaporin-4 (AQP4). As the removal of perivascular AQP4 via the deletion of α-syntrophin was shown to delay edema formation and K(+) clearance, we aimed to elucidate the impact of α-syntrophin knockout on volume changes in individual astrocytes in situ evoked by pathological stimuli using three dimensional confocal morphometry and changes in the extracellular space volume fraction (α) in situ and in vivo in the mouse cortex employing the real-time iontophoretic method. RT-qPCR profiling was used to reveal possible differences in the expression of ion channels/transporters that participate in maintaining ionic/neurotransmitter homeostasis. To visualize individual astrocytes in mice lacking α-syntrophin we crossbred GFAP/EGFP mice, in which the astrocytes are labeled by the enhanced green fluorescent protein under the human glial fibrillary acidic protein promoter, with α-syntrophin knockout mice. Three-dimensional confocal morphometry revealed that α-syntrophin deletion results in significantly smaller astrocyte swelling when induced by severe hypoosmotic stress, oxygen glucose deprivation (OGD) or 50 mM K(+). As for the mild stimuli, such as mild hypoosmotic or hyperosmotic stress or 10 mM K(+), α-syntrophin deletion had no effect on astrocyte swelling. Similarly, evaluation of relative α changes showed a significantly smaller decrease in α-syntrophin knockout mice only during severe pathological conditions, but not during mild stimuli. In summary, the deletion of α-syntrophin markedly alters astrocyte swelling during severe hypoosmotic stress, OGD or high K(+).
650    _2
$a zvířata $7 D000818
650    _2
$a akvaporin 4 $x genetika $x metabolismus $7 D051401
650    _2
$a astrocyty $x metabolismus $x patologie $7 D001253
650    _2
$a biologický transport $7 D001692
650    _2
$a edém mozku $x genetika $x metabolismus $x patologie $7 D001929
650    _2
$a proteiny vázající vápník $x nedostatek $x genetika $7 D002135
650    _2
$a mozková kůra $x metabolismus $x patologie $7 D002540
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a regulace genové exprese $7 D005786
650    _2
$a glukosa $x nedostatek $7 D005947
650    _2
$a zelené fluorescenční proteiny $x genetika $x metabolismus $7 D049452
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a membránové proteiny $x nedostatek $x genetika $7 D008565
650    _2
$a myši $7 D051379
650    _2
$a myši transgenní $7 D008822
650    _2
$a konfokální mikroskopie $7 D018613
650    _2
$a mikrotomie $7 D008867
650    _2
$a svalové proteiny $x nedostatek $x genetika $7 D009124
650    _2
$a proteiny nervové tkáně $x genetika $x metabolismus $7 D009419
650    _2
$a osmolární koncentrace $7 D009994
650    _2
$a osmotický tlak $7 D009997
650    _2
$a draslík $x metabolismus $7 D011188
650    _2
$a draslíkové kanály $x genetika $x metabolismus $7 D015221
650    _2
$a promotorové oblasti (genetika) $7 D011401
650    _2
$a signální transdukce $7 D015398
650    _2
$a stereotaktické techniky $7 D013238
650    _2
$a techniky tkáňových kultur $7 D046509
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Benesova, Jana $u Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
700    1_
$a Mikesova, Michaela $u Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
700    1_
$a Dzamba, David $u Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
700    1_
$a Honsa, Pavel $u Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
700    1_
$a Kriska, Jan $u Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
700    1_
$a Butenko, Olena $u Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
700    1_
$a Novosadova, Vendula $u Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
700    1_
$a Valihrach, Lukas $u Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
700    1_
$a Kubista, Mikael $u Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
700    1_
$a Dmytrenko, Lesia $u Department of Neuroscience, Charles University, 2nd Faculty of Medicine, Prague, Czech Republic.
700    1_
$a Cicanic, Michal $u Department of Neuroscience, Charles University, 2nd Faculty of Medicine, Prague, Czech Republic.
700    1_
$a Vargova, Lydia $u Department of Neuroscience, Charles University, 2nd Faculty of Medicine, Prague, Czech Republic.
773    0_
$w MED00180950 $t PloS one $x 1932-6203 $g Roč. 9, č. 11 (2014), s. e113444
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25426721 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20151005 $b ABA008
991    __
$a 20151005124930 $b ABA008
999    __
$a ok $b bmc $g 1092576 $s 914826
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2014 $b 9 $c 11 $d e113444 $e 20141126 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
LZP    __
$a Pubmed-20151005

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...