Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Analysis of in-air movement in handwriting: A novel marker for Parkinson's disease

P. Drotár, J. Mekyska, I. Rektorová, L. Masarová, Z. Smékal, M. Faundez-Zanuy,

. 2014 ; 117 (3) : 405-411. [pub] 20140917

Jazyk angličtina Země Irsko

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc15031828

Grantová podpora
NT13499 MZ0 CEP - Centrální evidence projektů

BACKGROUND AND OBJECTIVE: Parkinson's disease (PD) is the second most common neurodegenerative disease affecting significant portion of elderly population. One of the most frequent hallmarks and usually also the first manifestation of PD is deterioration of handwriting characterized by micrographia and changes in kinematics of handwriting. There is no objective quantitative method of clinical diagnosis of PD. It is thought that PD can only be definitively diagnosed at postmortem, which further highlights the complexities of diagnosis. METHODS: We exploit the fact that movement during handwriting of a text consists not only from the on-surface movements of the hand, but also from the in-air trajectories performed when the hand moves in the air from one stroke to the next. We used a digitizing tablet to assess both in-air and on-surface kinematic variables during handwriting of a sentence in 37 PD patients on medication and 38 age- and gender-matched healthy controls. RESULTS: By applying feature selection algorithms and support vector machine learning methods to separate PD patients from healthy controls, we demonstrated that assessing the in-air/on-surface hand movements led to accurate classifications in 84% and 78% of subjects, respectively. Combining both modalities improved the accuracy by another 1% over the evaluation of in-air features alone and provided medically relevant diagnosis with 85.61% prediction accuracy. CONCLUSIONS: Assessment of in-air movements during handwriting has a major impact on disease classification accuracy. This study confirms that handwriting can be used as a marker for PD and can be with advance used in decision support systems for differential diagnosis of PD.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc15031828
003      
CZ-PrNML
005      
20181029084507.0
007      
ta
008      
151005s2014 ie f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.cmpb.2014.08.007 $2 doi
035    __
$a (PubMed)25261003
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ie
100    1_
$a Drotár, Peter. $u Brno University of Technology, Technicka 12, Brno, Czech Republic. $7 xx0228657
245    10
$a Analysis of in-air movement in handwriting: A novel marker for Parkinson's disease / $c P. Drotár, J. Mekyska, I. Rektorová, L. Masarová, Z. Smékal, M. Faundez-Zanuy,
520    9_
$a BACKGROUND AND OBJECTIVE: Parkinson's disease (PD) is the second most common neurodegenerative disease affecting significant portion of elderly population. One of the most frequent hallmarks and usually also the first manifestation of PD is deterioration of handwriting characterized by micrographia and changes in kinematics of handwriting. There is no objective quantitative method of clinical diagnosis of PD. It is thought that PD can only be definitively diagnosed at postmortem, which further highlights the complexities of diagnosis. METHODS: We exploit the fact that movement during handwriting of a text consists not only from the on-surface movements of the hand, but also from the in-air trajectories performed when the hand moves in the air from one stroke to the next. We used a digitizing tablet to assess both in-air and on-surface kinematic variables during handwriting of a sentence in 37 PD patients on medication and 38 age- and gender-matched healthy controls. RESULTS: By applying feature selection algorithms and support vector machine learning methods to separate PD patients from healthy controls, we demonstrated that assessing the in-air/on-surface hand movements led to accurate classifications in 84% and 78% of subjects, respectively. Combining both modalities improved the accuracy by another 1% over the evaluation of in-air features alone and provided medically relevant diagnosis with 85.61% prediction accuracy. CONCLUSIONS: Assessment of in-air movements during handwriting has a major impact on disease classification accuracy. This study confirms that handwriting can be used as a marker for PD and can be with advance used in decision support systems for differential diagnosis of PD.
650    _2
$a senioři $7 D000368
650    _2
$a algoritmy $7 D000465
650    _2
$a umělá inteligence $7 D001185
650    _2
$a biomechanika $7 D001696
650    _2
$a studie případů a kontrol $7 D016022
650    _2
$a systémy pro podporu klinického rozhodování $7 D020000
650    _2
$a diferenciální diagnóza $7 D003937
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a ruka $x fyziologie $7 D006225
650    12
$a psaní rukou $7 D006236
650    _2
$a lidé $7 D006801
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a lidé středního věku $7 D008875
650    _2
$a motorické dovednosti $7 D009048
650    12
$a pohyb $7 D009068
650    _2
$a Parkinsonova nemoc $x diagnóza $x patofyziologie $7 D010300
650    _2
$a reprodukovatelnost výsledků $7 D015203
650    _2
$a support vector machine $7 D060388
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Mekyska, Jiří. $u Brno University of Technology, Technicka 12, Brno, Czech Republic. $7 xx0228655
700    1_
$a Rektorová, Irena, $u First Department of Neurology, Masaryk University and St. Anne's Hospital, Pekarska 664, 656 91 Brno, Czech Republic. Electronic address: irena.rektorova@fnusa.cz. $d 1969- $7 ola2005284393
700    1_
$a Masárová, Lucia. $u First Department of Neurology, Masaryk University and St. Anne's Hospital, Pekarska 664, 656 91 Brno, Czech Republic. $7 xx0228653
700    1_
$a Smékal, Zdeněk $u Brno University of Technology, Technicka 12, Brno, Czech Republic. $7 xx0005416
700    1_
$a Faundez-Zanuy, Marcos $u Tecnocampus, Av. Ernest Lluch, 32, 08302 Mataro, Barcelona, Spain.
773    0_
$w MED00001214 $t Computer methods and programs in biomedicine $x 1872-7565 $g Roč. 117, č. 3 (2014), s. 405-411
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25261003 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20151005 $b ABA008
991    __
$a 20181029085022 $b ABA008
999    __
$a ok $b bmc $g 1092704 $s 914954
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2014 $b 117 $c 3 $d 405-411 $e 20140917 $i 1872-7565 $m Computer methods and programs in biomedicine $n Comput Methods Programs Biomed $x MED00001214
GRA    __
$a NT13499 $p MZ0
LZP    __
$a Pubmed-20151005

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...