-
Je něco špatně v tomto záznamu ?
Analysis of in-air movement in handwriting: A novel marker for Parkinson's disease
P. Drotár, J. Mekyska, I. Rektorová, L. Masarová, Z. Smékal, M. Faundez-Zanuy,
Jazyk angličtina Země Irsko
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
NT13499
MZ0
CEP - Centrální evidence projektů
- MeSH
- algoritmy MeSH
- biomechanika MeSH
- diferenciální diagnóza MeSH
- lidé středního věku MeSH
- lidé MeSH
- motorické dovednosti MeSH
- Parkinsonova nemoc diagnóza patofyziologie MeSH
- pohyb * MeSH
- psaní rukou * MeSH
- reprodukovatelnost výsledků MeSH
- ruka fyziologie MeSH
- senioři MeSH
- studie případů a kontrol MeSH
- support vector machine MeSH
- systémy pro podporu klinického rozhodování MeSH
- umělá inteligence MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND AND OBJECTIVE: Parkinson's disease (PD) is the second most common neurodegenerative disease affecting significant portion of elderly population. One of the most frequent hallmarks and usually also the first manifestation of PD is deterioration of handwriting characterized by micrographia and changes in kinematics of handwriting. There is no objective quantitative method of clinical diagnosis of PD. It is thought that PD can only be definitively diagnosed at postmortem, which further highlights the complexities of diagnosis. METHODS: We exploit the fact that movement during handwriting of a text consists not only from the on-surface movements of the hand, but also from the in-air trajectories performed when the hand moves in the air from one stroke to the next. We used a digitizing tablet to assess both in-air and on-surface kinematic variables during handwriting of a sentence in 37 PD patients on medication and 38 age- and gender-matched healthy controls. RESULTS: By applying feature selection algorithms and support vector machine learning methods to separate PD patients from healthy controls, we demonstrated that assessing the in-air/on-surface hand movements led to accurate classifications in 84% and 78% of subjects, respectively. Combining both modalities improved the accuracy by another 1% over the evaluation of in-air features alone and provided medically relevant diagnosis with 85.61% prediction accuracy. CONCLUSIONS: Assessment of in-air movements during handwriting has a major impact on disease classification accuracy. This study confirms that handwriting can be used as a marker for PD and can be with advance used in decision support systems for differential diagnosis of PD.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc15031828
- 003
- CZ-PrNML
- 005
- 20181029084507.0
- 007
- ta
- 008
- 151005s2014 ie f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.cmpb.2014.08.007 $2 doi
- 035 __
- $a (PubMed)25261003
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ie
- 100 1_
- $a Drotár, Peter. $u Brno University of Technology, Technicka 12, Brno, Czech Republic. $7 xx0228657
- 245 10
- $a Analysis of in-air movement in handwriting: A novel marker for Parkinson's disease / $c P. Drotár, J. Mekyska, I. Rektorová, L. Masarová, Z. Smékal, M. Faundez-Zanuy,
- 520 9_
- $a BACKGROUND AND OBJECTIVE: Parkinson's disease (PD) is the second most common neurodegenerative disease affecting significant portion of elderly population. One of the most frequent hallmarks and usually also the first manifestation of PD is deterioration of handwriting characterized by micrographia and changes in kinematics of handwriting. There is no objective quantitative method of clinical diagnosis of PD. It is thought that PD can only be definitively diagnosed at postmortem, which further highlights the complexities of diagnosis. METHODS: We exploit the fact that movement during handwriting of a text consists not only from the on-surface movements of the hand, but also from the in-air trajectories performed when the hand moves in the air from one stroke to the next. We used a digitizing tablet to assess both in-air and on-surface kinematic variables during handwriting of a sentence in 37 PD patients on medication and 38 age- and gender-matched healthy controls. RESULTS: By applying feature selection algorithms and support vector machine learning methods to separate PD patients from healthy controls, we demonstrated that assessing the in-air/on-surface hand movements led to accurate classifications in 84% and 78% of subjects, respectively. Combining both modalities improved the accuracy by another 1% over the evaluation of in-air features alone and provided medically relevant diagnosis with 85.61% prediction accuracy. CONCLUSIONS: Assessment of in-air movements during handwriting has a major impact on disease classification accuracy. This study confirms that handwriting can be used as a marker for PD and can be with advance used in decision support systems for differential diagnosis of PD.
- 650 _2
- $a senioři $7 D000368
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a umělá inteligence $7 D001185
- 650 _2
- $a biomechanika $7 D001696
- 650 _2
- $a studie případů a kontrol $7 D016022
- 650 _2
- $a systémy pro podporu klinického rozhodování $7 D020000
- 650 _2
- $a diferenciální diagnóza $7 D003937
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a ruka $x fyziologie $7 D006225
- 650 12
- $a psaní rukou $7 D006236
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a lidé středního věku $7 D008875
- 650 _2
- $a motorické dovednosti $7 D009048
- 650 12
- $a pohyb $7 D009068
- 650 _2
- $a Parkinsonova nemoc $x diagnóza $x patofyziologie $7 D010300
- 650 _2
- $a reprodukovatelnost výsledků $7 D015203
- 650 _2
- $a support vector machine $7 D060388
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Mekyska, Jiří. $u Brno University of Technology, Technicka 12, Brno, Czech Republic. $7 xx0228655
- 700 1_
- $a Rektorová, Irena, $u First Department of Neurology, Masaryk University and St. Anne's Hospital, Pekarska 664, 656 91 Brno, Czech Republic. Electronic address: irena.rektorova@fnusa.cz. $d 1969- $7 ola2005284393
- 700 1_
- $a Masárová, Lucia. $u First Department of Neurology, Masaryk University and St. Anne's Hospital, Pekarska 664, 656 91 Brno, Czech Republic. $7 xx0228653
- 700 1_
- $a Smékal, Zdeněk $u Brno University of Technology, Technicka 12, Brno, Czech Republic. $7 xx0005416
- 700 1_
- $a Faundez-Zanuy, Marcos $u Tecnocampus, Av. Ernest Lluch, 32, 08302 Mataro, Barcelona, Spain.
- 773 0_
- $w MED00001214 $t Computer methods and programs in biomedicine $x 1872-7565 $g Roč. 117, č. 3 (2014), s. 405-411
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25261003 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20151005 $b ABA008
- 991 __
- $a 20181029085022 $b ABA008
- 999 __
- $a ok $b bmc $g 1092704 $s 914954
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2014 $b 117 $c 3 $d 405-411 $e 20140917 $i 1872-7565 $m Computer methods and programs in biomedicine $n Comput Methods Programs Biomed $x MED00001214
- GRA __
- $a NT13499 $p MZ0
- LZP __
- $a Pubmed-20151005