-
Je něco špatně v tomto záznamu ?
Dynamic 31P MR spectroscopy of plantar flexion: influence of ergometer design, magnetic field strength (3 and 7 T), and RF-coil design
P. Šedivý, MC. Kipfelsberger, M. Dezortová, M. Krššák, M. Drobný, M. Chmelík, J. Rydlo, S. Trattnig, M. Hájek, L. Valkovič,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu hodnotící studie, časopisecké články, multicentrická studie, práce podpořená grantem
Grantová podpora
NT11275
MZ0
CEP - Centrální evidence projektů
Digitální knihovna NLK
Plný text - Článek
Zdroj
NLK
Medline Complete (EBSCOhost)
od 2007-01-01 do Před 1 rokem
PubMed
25832057
DOI
10.1118/1.4914448
Knihovny.cz E-zdroje
- MeSH
- bérec fyziologie MeSH
- cvičení fyziologie MeSH
- design vybavení MeSH
- dospělí MeSH
- ergometrie přístrojové vybavení metody MeSH
- fosfokreatin metabolismus MeSH
- isotonická kontrakce fyziologie MeSH
- izotopy fosforu MeSH
- kosterní svaly metabolismus MeSH
- lidé MeSH
- magnetická rezonanční spektroskopie přístrojové vybavení metody MeSH
- magnetické pole MeSH
- mitochondrie metabolismus MeSH
- reprodukovatelnost výsledků MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
PURPOSE: Dynamic phosphorus magnetic resonance spectroscopy ((31)P MRS) during and after acute exercise enables the noninvasive in vivo determination of the mitochondrial capacity of skeletal muscle. Nevertheless, the lack of standardization in experimental setups leads to significant variations in published values of maximal aerobic capacity, even in the population of healthy volunteers. Thus, in this study, we aimed to assess the impact of the ergometer type (pneumatic and mechanical resistance construction), radiofrequency (RF)-coil diameter, and different magnetic field strengths (3 and 7 T) on the metabolic parameters measured by dynamic (31)P MRS during a plantar flexion isotonic exercise protocol within the same group of healthy volunteers. METHODS: Dynamic (31)P MRS measurements of the calf muscle in 11 volunteers (mean age, 36 ± 13 yrs; mean BMI, 23.5 ± 2.5 kg/m(2)), on a 3 T MR system with a custom-made mechanical ergometer in the first research laboratory (RL1) and on 3 and 7 T MR systems equipped with a commercial pneumatic ergometer in the second research laboratory (RL2), were performed at three different workloads. RF-coils differed slightly between the sites and MR systems used. The repeatability of the experimental protocol was tested in every setup. The basal concentrations of phosphocreatine (PCr), exercise-induced depletion of PCr (ΔPCr), initial PCr resynthesis rate (VPCr), and mitochondrial capacity (Qmax) were calculated and compared between the research sites and field strengths. RESULTS: High repeatability of the measurement protocol was found in every experimental setup. No significant differences at any workload were found in these metabolic parameters assessed at different magnetic field strengths (3 T vs 7 T), using the same ergometer (in RL2) and a similar RF-coil. In the inter-research laboratory comparison at the same field strength (3 T), but with using different ergometers and RF-coils, differences were found in the concentration of PCr measured at rest and in the drop in PCr signal intensity. These differences translated into difference in the value of mitochondrial capacity at a workload of 15% of maximal voluntary contraction (MVC) force (0.45 ± 0.16 mM/s vs 0.31 ± 0.08 mM/s, in the RL1 and RL2, respectively). CONCLUSIONS: Metabolic parameters measured during exercise challenge by dynamic (31)P MRS do not depend upon the magnetic field strength used. For multicenter studies with different ergometers, it is important to set the same workload, measurement, and evaluation protocols, especially when the effects of very mild exercise (15% MVC) are to be compared. However, a higher workload (24% MVC) decreases the influence of imperfections and intersite differences for the assessed value of maximal mitochondrial capacity.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16000183
- 003
- CZ-PrNML
- 005
- 20190826093656.0
- 007
- ta
- 008
- 160108s2015 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1118/1.4914448 $2 doi
- 035 __
- $a (PubMed)25832057
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Šedivý, Petr $u MR-Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague 140 21, Czech Republic. $7 xx0216034
- 245 10
- $a Dynamic 31P MR spectroscopy of plantar flexion: influence of ergometer design, magnetic field strength (3 and 7 T), and RF-coil design / $c P. Šedivý, MC. Kipfelsberger, M. Dezortová, M. Krššák, M. Drobný, M. Chmelík, J. Rydlo, S. Trattnig, M. Hájek, L. Valkovič,
- 520 9_
- $a PURPOSE: Dynamic phosphorus magnetic resonance spectroscopy ((31)P MRS) during and after acute exercise enables the noninvasive in vivo determination of the mitochondrial capacity of skeletal muscle. Nevertheless, the lack of standardization in experimental setups leads to significant variations in published values of maximal aerobic capacity, even in the population of healthy volunteers. Thus, in this study, we aimed to assess the impact of the ergometer type (pneumatic and mechanical resistance construction), radiofrequency (RF)-coil diameter, and different magnetic field strengths (3 and 7 T) on the metabolic parameters measured by dynamic (31)P MRS during a plantar flexion isotonic exercise protocol within the same group of healthy volunteers. METHODS: Dynamic (31)P MRS measurements of the calf muscle in 11 volunteers (mean age, 36 ± 13 yrs; mean BMI, 23.5 ± 2.5 kg/m(2)), on a 3 T MR system with a custom-made mechanical ergometer in the first research laboratory (RL1) and on 3 and 7 T MR systems equipped with a commercial pneumatic ergometer in the second research laboratory (RL2), were performed at three different workloads. RF-coils differed slightly between the sites and MR systems used. The repeatability of the experimental protocol was tested in every setup. The basal concentrations of phosphocreatine (PCr), exercise-induced depletion of PCr (ΔPCr), initial PCr resynthesis rate (VPCr), and mitochondrial capacity (Qmax) were calculated and compared between the research sites and field strengths. RESULTS: High repeatability of the measurement protocol was found in every experimental setup. No significant differences at any workload were found in these metabolic parameters assessed at different magnetic field strengths (3 T vs 7 T), using the same ergometer (in RL2) and a similar RF-coil. In the inter-research laboratory comparison at the same field strength (3 T), but with using different ergometers and RF-coils, differences were found in the concentration of PCr measured at rest and in the drop in PCr signal intensity. These differences translated into difference in the value of mitochondrial capacity at a workload of 15% of maximal voluntary contraction (MVC) force (0.45 ± 0.16 mM/s vs 0.31 ± 0.08 mM/s, in the RL1 and RL2, respectively). CONCLUSIONS: Metabolic parameters measured during exercise challenge by dynamic (31)P MRS do not depend upon the magnetic field strength used. For multicenter studies with different ergometers, it is important to set the same workload, measurement, and evaluation protocols, especially when the effects of very mild exercise (15% MVC) are to be compared. However, a higher workload (24% MVC) decreases the influence of imperfections and intersite differences for the assessed value of maximal mitochondrial capacity.
- 650 _2
- $a dospělí $7 D000328
- 650 _2
- $a design vybavení $7 D004867
- 650 _2
- $a ergometrie $x přístrojové vybavení $x metody $7 D016552
- 650 _2
- $a cvičení $x fyziologie $7 D015444
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a isotonická kontrakce $x fyziologie $7 D007551
- 650 _2
- $a bérec $x fyziologie $7 D007866
- 650 _2
- $a magnetické pole $7 D060526
- 650 _2
- $a magnetická rezonanční spektroskopie $x přístrojové vybavení $x metody $7 D009682
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a mitochondrie $x metabolismus $7 D008928
- 650 _2
- $a kosterní svaly $x metabolismus $7 D018482
- 650 _2
- $a fosfokreatin $x metabolismus $7 D010725
- 650 _2
- $a izotopy fosforu $7 D010759
- 650 _2
- $a reprodukovatelnost výsledků $7 D015203
- 655 _2
- $a hodnotící studie $7 D023362
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a multicentrická studie $7 D016448
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Kipfelsberger, Monika Christina $u High-Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna A-1090, Austria and Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna A-1090, Austria.
- 700 1_
- $a Dezortová, Monika, $u MR-Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague 140 21, Czech Republic. $d 1970- $7 xx0061339
- 700 1_
- $a Krššák, Martin $u High-Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna A-1090, Austria; Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna A-1090, Austria; and Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna A-1090, Austria.
- 700 1_
- $a Drobný, Miloslav $u MR-Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague 140 21, Czech Republic. $7 xx0230543
- 700 1_
- $a Chmelík, Marek $u High-Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna A-1090, Austria and Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna A-1090, Austria.
- 700 1_
- $a Rydlo, Jan $u MR-Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague 140 21, Czech Republic. $7 _AN092726
- 700 1_
- $a Trattnig, Siegfried $u High-Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna A-1090, Austria and Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna A-1090, Austria.
- 700 1_
- $a Hájek, Milan, $u MR-Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague 140 21, Czech Republic. $d 1947- $7 xx0074172
- 700 1_
- $a Valkovič, Ladislav $u High-Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna A-1090, Austria; Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava 841 04, Slovakia; and Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna A-1090, Austria.
- 773 0_
- $w MED00003245 $t Medical physics $x 0094-2405 $g Roč. 42, č. 4 (2015), s. 1678-1689
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25832057 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20160108 $b ABA008
- 991 __
- $a 20190826093915 $b ABA008
- 999 __
- $a ok $b bmc $g 1102464 $s 924389
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 42 $c 4 $d 1678-1689 $i 0094-2405 $m Medical physics $n Med Phys $x MED00003245
- GRA __
- $a NT11275 $p MZ0
- LZP __
- $a Pubmed-20160108