-
Something wrong with this record ?
Three ancient hormonal cues co-ordinate shoot branching in a moss
Y. Coudert, W. Palubicki, K. Ljung, O. Novak, O. Leyser, CJ. Harrison,
Language English Country England, Great Britain
Document type Journal Article, Research Support, Non-U.S. Gov't
NLK
Directory of Open Access Journals
from 2013
Free Medical Journals
from 2012
PubMed Central
from 2012
Europe PubMed Central
from 2012
ProQuest Central
from 2012-01-01
Open Access Digital Library
from 2012-01-01
Open Access Digital Library
from 2013-01-01
Health & Medicine (ProQuest)
from 2012-01-01
ROAD: Directory of Open Access Scholarly Resources
from 2012
PubMed
25806686
DOI
10.7554/elife.06808
Knihovny.cz E-resources
- MeSH
- Models, Biological MeSH
- Biological Transport drug effects MeSH
- Cytokinins biosynthesis MeSH
- Plant Epidermis cytology growth & development MeSH
- Plants, Genetically Modified MeSH
- Indoleacetic Acids metabolism pharmacology MeSH
- Lactones pharmacology MeSH
- Bryopsida drug effects growth & development MeSH
- Morphogenesis drug effects MeSH
- Mutation genetics MeSH
- Gene Expression Regulation, Plant drug effects MeSH
- Plant Growth Regulators pharmacology MeSH
- Plant Proteins metabolism MeSH
- Body Patterning drug effects MeSH
- Plant Shoots drug effects growth & development MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Shoot branching is a primary contributor to plant architecture, evolving independently in flowering plant sporophytes and moss gametophytes. Mechanistic understanding of branching is largely limited to flowering plants such as Arabidopsis, which have a recent evolutionary origin. We show that in gametophytic shoots of Physcomitrella, lateral branches arise by re-specification of epidermal cells into branch initials. A simple model co-ordinating the activity of leafy shoot tips can account for branching patterns, and three known and ancient hormonal regulators of sporophytic branching interact to generate the branching pattern- auxin, cytokinin and strigolactone. The mode of auxin transport required in branch patterning is a key divergence point from known sporophytic pathways. Although PIN-mediated basipetal auxin transport regulates branching patterns in flowering plants, this is not so in Physcomitrella, where bi-directional transport is required to generate realistic branching patterns. Experiments with callose synthesis inhibitors suggest plasmodesmal connectivity as a potential mechanism for transport.
Department of Plant Sciences University of Cambridge Cambridge United Kingdom
Sainsbury Laboratory University of Cambridge Cambridge United Kingdom
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16000194
- 003
- CZ-PrNML
- 005
- 20160516110833.0
- 007
- ta
- 008
- 160108s2015 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.7554/eLife.06808 $2 doi
- 035 __
- $a (PubMed)25806686
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Coudert, Yoan $u Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom.
- 245 10
- $a Three ancient hormonal cues co-ordinate shoot branching in a moss / $c Y. Coudert, W. Palubicki, K. Ljung, O. Novak, O. Leyser, CJ. Harrison,
- 520 9_
- $a Shoot branching is a primary contributor to plant architecture, evolving independently in flowering plant sporophytes and moss gametophytes. Mechanistic understanding of branching is largely limited to flowering plants such as Arabidopsis, which have a recent evolutionary origin. We show that in gametophytic shoots of Physcomitrella, lateral branches arise by re-specification of epidermal cells into branch initials. A simple model co-ordinating the activity of leafy shoot tips can account for branching patterns, and three known and ancient hormonal regulators of sporophytic branching interact to generate the branching pattern- auxin, cytokinin and strigolactone. The mode of auxin transport required in branch patterning is a key divergence point from known sporophytic pathways. Although PIN-mediated basipetal auxin transport regulates branching patterns in flowering plants, this is not so in Physcomitrella, where bi-directional transport is required to generate realistic branching patterns. Experiments with callose synthesis inhibitors suggest plasmodesmal connectivity as a potential mechanism for transport.
- 650 _2
- $a biologický transport $x účinky léků $7 D001692
- 650 _2
- $a rozvržení tělního plánu $x účinky léků $7 D019521
- 650 _2
- $a mechy $x účinky léků $x růst a vývoj $7 D019068
- 650 _2
- $a cytokininy $x biosyntéza $7 D003583
- 650 _2
- $a regulace genové exprese u rostlin $x účinky léků $7 D018506
- 650 _2
- $a kyseliny indoloctové $x metabolismus $x farmakologie $7 D007210
- 650 _2
- $a laktony $x farmakologie $7 D007783
- 650 _2
- $a biologické modely $7 D008954
- 650 _2
- $a morfogeneze $x účinky léků $7 D009024
- 650 _2
- $a mutace $x genetika $7 D009154
- 650 _2
- $a epidermis rostlin $x cytologie $x růst a vývoj $7 D019441
- 650 _2
- $a regulátory růstu rostlin $x farmakologie $7 D010937
- 650 _2
- $a rostlinné proteiny $x metabolismus $7 D010940
- 650 _2
- $a výhonky rostlin $x účinky léků $x růst a vývoj $7 D018520
- 650 _2
- $a geneticky modifikované rostliny $7 D030821
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Palubicki, Wojtek $u Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom.
- 700 1_
- $a Ljung, Karin $u Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Umeå University, Umeå, Sweden.
- 700 1_
- $a Novak, Ondrej $u Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany ASCR, Olomouc, Czech Republic.
- 700 1_
- $a Leyser, Ottoline $u Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom.
- 700 1_
- $a Harrison, C Jill $u Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom.
- 773 0_
- $w MED00188753 $t eLife $x 2050-084X $g Roč. 4, č. - (2015)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25806686 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20160108 $b ABA008
- 991 __
- $a 20160516110944 $b ABA008
- 999 __
- $a ok $b bmc $g 1102475 $s 924400
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 4 $c - $e 20150325 $i 2050-084X $m eLife $n eLife $x MED00188753
- LZP __
- $a Pubmed-20160108