-
Je něco špatně v tomto záznamu ?
Ligand-based 3D QSAR analysis of reactivation potency of mono- and bis-pyridinium aldoximes toward VX-inhibited rat acetylcholinesterase
R. Dolezal, J. Korabecny, D. Malinak, J. Honegr, K. Musilek, K. Kuca,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- acetylcholinesterasa chemie MeSH
- aktivace enzymů MeSH
- chemické bojové látky chemie MeSH
- cholinesterasové inhibitory chemie MeSH
- GPI-vázané proteiny agonisté antagonisté a inhibitory chemie MeSH
- kinetika MeSH
- krysa rodu rattus MeSH
- kvantitativní vztahy mezi strukturou a aktivitou MeSH
- kvantová teorie MeSH
- ligandy MeSH
- organothiofosforové sloučeniny chemie MeSH
- oximy chemie MeSH
- pyridinové sloučeniny chemie MeSH
- reaktivátory cholinesterasy chemie MeSH
- simulace molekulární dynamiky MeSH
- simulace molekulového dockingu MeSH
- termodynamika MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
To predict unknown reactivation potencies of 12 mono- and bis-pyridinium aldoximes for VX-inhibited rat acetylcholinesterase (rAChE), three-dimensional quantitative structure-activity relationship (3D QSAR) analysis has been carried out. Utilizing molecular interaction fields (MIFs) calculated by molecular mechanical (MMFF94) and quantum chemical (B3LYP/6-31G*) methods, two satisfactory ligand-based CoMFA models have been developed: 1. R(2)=0.9989, Q(LOO)(2)=0.9090, Q(LTO)(2)=0.8921, Q(LMO(20%))(2)=0.8853, R(ext)(2)=0.9259, SDEP(ext)=6.8938; 2. R(2)=0.9962, Q(LOO)(2)=0.9368, Q(LTO)(2)=0.9298, Q(LMO(20%))(2)=0.9248, R(ext)(2)=0.8905, SDEP(ext)=6.6756. High statistical significance of the 3D QSAR models has been achieved through the application of several data noise reduction techniques (i.e. smart region definition SRD, fractional factor design FFD, uninformative/iterative variable elimination UVE/IVE) on the original MIFs. Besides the ligand-based CoMFA models, an alignment molecular set constructed by flexible molecular docking has been also studied. The contour maps as well as the predicted reactivation potencies resulting from 3D QSAR analyses help better understand which structural features are associated with increased reactivation potency of studied compounds.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16000383
- 003
- CZ-PrNML
- 005
- 20160126102239.0
- 007
- ta
- 008
- 160108s2015 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.jmgm.2014.11.010 $2 doi
- 035 __
- $a (PubMed)25588616
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Dolezal, Rafael $u Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic.
- 245 10
- $a Ligand-based 3D QSAR analysis of reactivation potency of mono- and bis-pyridinium aldoximes toward VX-inhibited rat acetylcholinesterase / $c R. Dolezal, J. Korabecny, D. Malinak, J. Honegr, K. Musilek, K. Kuca,
- 520 9_
- $a To predict unknown reactivation potencies of 12 mono- and bis-pyridinium aldoximes for VX-inhibited rat acetylcholinesterase (rAChE), three-dimensional quantitative structure-activity relationship (3D QSAR) analysis has been carried out. Utilizing molecular interaction fields (MIFs) calculated by molecular mechanical (MMFF94) and quantum chemical (B3LYP/6-31G*) methods, two satisfactory ligand-based CoMFA models have been developed: 1. R(2)=0.9989, Q(LOO)(2)=0.9090, Q(LTO)(2)=0.8921, Q(LMO(20%))(2)=0.8853, R(ext)(2)=0.9259, SDEP(ext)=6.8938; 2. R(2)=0.9962, Q(LOO)(2)=0.9368, Q(LTO)(2)=0.9298, Q(LMO(20%))(2)=0.9248, R(ext)(2)=0.8905, SDEP(ext)=6.6756. High statistical significance of the 3D QSAR models has been achieved through the application of several data noise reduction techniques (i.e. smart region definition SRD, fractional factor design FFD, uninformative/iterative variable elimination UVE/IVE) on the original MIFs. Besides the ligand-based CoMFA models, an alignment molecular set constructed by flexible molecular docking has been also studied. The contour maps as well as the predicted reactivation potencies resulting from 3D QSAR analyses help better understand which structural features are associated with increased reactivation potency of studied compounds.
- 650 _2
- $a acetylcholinesterasa $x chemie $7 D000110
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a chemické bojové látky $x chemie $7 D002619
- 650 _2
- $a cholinesterasové inhibitory $x chemie $7 D002800
- 650 _2
- $a reaktivátory cholinesterasy $x chemie $7 D002801
- 650 _2
- $a aktivace enzymů $7 D004789
- 650 _2
- $a GPI-vázané proteiny $x agonisté $x antagonisté a inhibitory $x chemie $7 D058851
- 650 _2
- $a kinetika $7 D007700
- 650 _2
- $a ligandy $7 D008024
- 650 _2
- $a simulace molekulového dockingu $7 D062105
- 650 _2
- $a simulace molekulární dynamiky $7 D056004
- 650 _2
- $a organothiofosforové sloučeniny $x chemie $7 D009946
- 650 _2
- $a oximy $x chemie $7 D010091
- 650 _2
- $a pyridinové sloučeniny $x chemie $7 D011726
- 650 _2
- $a kvantitativní vztahy mezi strukturou a aktivitou $7 D021281
- 650 _2
- $a kvantová teorie $7 D011789
- 650 _2
- $a krysa rodu Rattus $7 D051381
- 650 _2
- $a termodynamika $7 D013816
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Korabecny, Jan $u Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; Department of Toxicology, Department of Public Health, Centre for Advanced Studies, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic; Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic.
- 700 1_
- $a Malinak, David $u Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17 Listopadu 15, 708 33 Ostrava-Poruba, Czech Republic.
- 700 1_
- $a Honegr, Jan $u Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17 Listopadu 15, 708 33 Ostrava-Poruba, Czech Republic.
- 700 1_
- $a Musilek, Kamil $u Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic.
- 700 1_
- $a Kuca, Kamil $u Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic. Electronic address: kamil.kuca@fnhk.cz.
- 773 0_
- $w MED00166981 $t Journal of molecular graphics & modelling $x 1873-4243 $g Roč. 56, č. - (2015), s. 113-29
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25588616 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20160108 $b ABA008
- 991 __
- $a 20160126102402 $b ABA008
- 999 __
- $a ok $b bmc $g 1102664 $s 924589
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 56 $c - $d 113-29 $e 20141225 $i 1873-4243 $m Journal of molecular graphics & modelling $n J. mol. graph. model. $x MED00166981
- LZP __
- $a Pubmed-20160108