-
Je něco špatně v tomto záznamu ?
Osteoblastic cells trigger gate currents on nanocrystalline diamond transistor
T. Izak, M. Krátká, A. Kromka, B. Rezek,
Jazyk angličtina Země Nizozemsko
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- akční potenciály * MeSH
- biosenzitivní techniky přístrojové vybavení MeSH
- buněčná adheze * MeSH
- diamant chemie MeSH
- elektronické tranzistory * MeSH
- ionty MeSH
- lidé MeSH
- nádorové buňky kultivované MeSH
- nádory kostí * MeSH
- osteosarkom * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We show the influence of osteoblastic SAOS-2 cells on the transfer characteristics of nanocrystalline diamond solution-gated field-effect transistors (SGFET) prepared on glass substrates. Channels of these fully transparent SGFETs are realized by hydrogen termination of undoped diamond film. After cell cultivation, the transistors exhibit about 100× increased leakage currents (up to 10nA). During and after the cell delamination, the transistors return to original gate currents. We propose a mechanism where this triggering effect is attributed to ions released from adhered cells, which depends on the cell adhesion morphology, and could be used for cell culture monitoring.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16010372
- 003
- CZ-PrNML
- 005
- 20160413095111.0
- 007
- ta
- 008
- 160408s2015 ne f 000 0|engg|
- 009
- AR
- 024 7_
- $a 10.1016/j.colsurfb.2015.03.035 $2 doi
- 024 7_
- $a 10.1016/j.colsurfb.2015.03.035 $2 doi
- 035 __
- $a (PubMed)25835144
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Izak, Tibor $u Institute of Physics ASCR, v.v.i., Cukrovarnická 10, 162 00 Prague 6, Czech Republic. Electronic address: izak@fzu.cz.
- 245 10
- $a Osteoblastic cells trigger gate currents on nanocrystalline diamond transistor / $c T. Izak, M. Krátká, A. Kromka, B. Rezek,
- 520 9_
- $a We show the influence of osteoblastic SAOS-2 cells on the transfer characteristics of nanocrystalline diamond solution-gated field-effect transistors (SGFET) prepared on glass substrates. Channels of these fully transparent SGFETs are realized by hydrogen termination of undoped diamond film. After cell cultivation, the transistors exhibit about 100× increased leakage currents (up to 10nA). During and after the cell delamination, the transistors return to original gate currents. We propose a mechanism where this triggering effect is attributed to ions released from adhered cells, which depends on the cell adhesion morphology, and could be used for cell culture monitoring.
- 650 12
- $a akční potenciály $7 D000200
- 650 _2
- $a biosenzitivní techniky $x přístrojové vybavení $7 D015374
- 650 12
- $a nádory kostí $7 D001859
- 650 12
- $a buněčná adheze $7 D002448
- 650 _2
- $a diamant $x chemie $7 D018130
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a ionty $7 D007477
- 650 12
- $a osteosarkom $7 D012516
- 650 12
- $a elektronické tranzistory $7 D014173
- 650 _2
- $a nádorové buňky kultivované $7 D014407
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Krátká, Marie $u Institute of Physics ASCR, v.v.i., Cukrovarnická 10, 162 00 Prague 6, Czech Republic.
- 700 1_
- $a Kromka, Alexander $u Institute of Physics ASCR, v.v.i., Cukrovarnická 10, 162 00 Prague 6, Czech Republic.
- 700 1_
- $a Rezek, Bohuslav $u Institute of Physics ASCR, v.v.i., Cukrovarnická 10, 162 00 Prague 6, Czech Republic.
- 773 0_
- $w MED00180202 $t Colloids and surfaces. B, Biointerfaces. Biointerfaces $x 1873-4367 $g Roč. 129, č. - (2015), s. 95-9
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25835144 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20160408 $b ABA008
- 991 __
- $a 20160413095155 $b ABA008
- 999 __
- $a ok $b bmc $g 1113801 $s 934740
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 129 $c - $d 95-9 $e 20150321 $i 1873-4367 $m Colloids and surfaces. B, Biointerfaces $n Colloids surf., B Biointerfaces $x MED00180202 $o Biointerfaces
- LZP __
- $a Pubmed-20160408