• Something wrong with this record ?

Rapid and sensitive detection of multiple microRNAs in cell lysate by low-fouling surface plasmon resonance biosensor

H. Vaisocherová, H. Šípová, I. Víšová, M. Bocková, T. Špringer, ML. Ermini, X. Song, Z. Krejčík, L. Chrastinová, O. Pastva, K. Pimková, M. Dostálová Merkerová, JE. Dyr, J. Homola,

. 2015 ; 70 (-) : 226-231. [pub] 20150317

Language English Country England, Great Britain

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
NT13847 MZ0 CEP Register

We report an ultra-low fouling surface plasmon resonance imaging (SPRi) biosensor for the rapid simultaneous detection of multiple miRNAs in erythrocyte lysate (EL) at subpicomolar levels without need of RNA extraction. The SPRi chips were coated with ultra-low fouling functionalizable poly(carboxybetaine acrylamide) (pCBAA) brushes having optimized thicknesses and directly functionalized with amino-modified oligonucleotide probes. We have characterized the effect of the brush thickness on the probe loading capacity: a loading capacity of ~9.8×10(12) probes/cm(2) was achieved for pCBAA having a thickness of ~40 nm. The probe-functionalized sensor also exhibited a high resistance to fouling from ~90% EL samples (<2 ng/cm(2)). A two-step detection assay was employed for multiplexed miRNA detection in EL. Specifically, the assay consisted of (i) a sandwich-type hybridization of the probe-functionalized pCBAA with target miRNA in EL (bound to biotinylated oligonucleotides) and (ii) the capture of streptavidin-functionalized gold nanoparticles to the aforementioned biotinylated probes. We have demonstrated that this approach enables the detection of miRNAs in EL at concentrations as low as 0.5 pM. Finally, we have confirmed the detection of four endogenous miRNAs representing a set of potential miRNA biomarkers of myelodysplastic syndrome (MDS) in clinical EL samples (miR-16, miR-181, miR-34a, and miR-125b). The results revealed significantly higher levels of miR-16 in all the clinical EL samples compared to the other measured miRNAs.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16010379
003      
CZ-PrNML
005      
20191029105904.0
007      
ta
008      
160408s2015 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.bios.2015.03.038 $2 doi
024    7_
$a 10.1016/j.bios.2015.03.038 $2 doi
035    __
$a (PubMed)25829219
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Vaisocherová, Hana $u Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberská 57, 18251 Prague, Czech Republic.
245    10
$a Rapid and sensitive detection of multiple microRNAs in cell lysate by low-fouling surface plasmon resonance biosensor / $c H. Vaisocherová, H. Šípová, I. Víšová, M. Bocková, T. Špringer, ML. Ermini, X. Song, Z. Krejčík, L. Chrastinová, O. Pastva, K. Pimková, M. Dostálová Merkerová, JE. Dyr, J. Homola,
520    9_
$a We report an ultra-low fouling surface plasmon resonance imaging (SPRi) biosensor for the rapid simultaneous detection of multiple miRNAs in erythrocyte lysate (EL) at subpicomolar levels without need of RNA extraction. The SPRi chips were coated with ultra-low fouling functionalizable poly(carboxybetaine acrylamide) (pCBAA) brushes having optimized thicknesses and directly functionalized with amino-modified oligonucleotide probes. We have characterized the effect of the brush thickness on the probe loading capacity: a loading capacity of ~9.8×10(12) probes/cm(2) was achieved for pCBAA having a thickness of ~40 nm. The probe-functionalized sensor also exhibited a high resistance to fouling from ~90% EL samples (<2 ng/cm(2)). A two-step detection assay was employed for multiplexed miRNA detection in EL. Specifically, the assay consisted of (i) a sandwich-type hybridization of the probe-functionalized pCBAA with target miRNA in EL (bound to biotinylated oligonucleotides) and (ii) the capture of streptavidin-functionalized gold nanoparticles to the aforementioned biotinylated probes. We have demonstrated that this approach enables the detection of miRNAs in EL at concentrations as low as 0.5 pM. Finally, we have confirmed the detection of four endogenous miRNAs representing a set of potential miRNA biomarkers of myelodysplastic syndrome (MDS) in clinical EL samples (miR-16, miR-181, miR-34a, and miR-125b). The results revealed significantly higher levels of miR-16 in all the clinical EL samples compared to the other measured miRNAs.
650    _2
$a akrylamidy $x chemie $7 D000178
650    _2
$a biosenzitivní techniky $x přístrojové vybavení $7 D015374
650    _2
$a frakcionace buněk $7 D002458
650    _2
$a biokompatibilní potahované materiály $x chemická syntéza $7 D020099
650    _2
$a komplexní směsi $x analýza $7 D045424
650    _2
$a design vybavení $7 D004867
650    _2
$a analýza selhání vybavení $7 D019544
650    _2
$a mikro RNA $x analýza $x chemie $x genetika $7 D035683
650    _2
$a polymery $x chemie $7 D011108
650    _2
$a reprodukovatelnost výsledků $7 D015203
650    _2
$a senzitivita a specificita $7 D012680
650    _2
$a povrchová plasmonová rezonance $x přístrojové vybavení $7 D020349
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Šípová, Hana $u Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberská 57, 18251 Prague, Czech Republic. $7 xx0222979
700    1_
$a Víšová, Ivana $u Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberská 57, 18251 Prague, Czech Republic.
700    1_
$a Bocková, Markéta $u Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberská 57, 18251 Prague, Czech Republic.
700    1_
$a Špringer, Tomáš $u Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberská 57, 18251 Prague, Czech Republic. $7 xx0248514
700    1_
$a Ermini, Maria Laura $u Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberská 57, 18251 Prague, Czech Republic.
700    1_
$a Song, Xue $u Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberská 57, 18251 Prague, Czech Republic.
700    1_
$a Krejčík, Zdeněk $u Institute of Hematology and Blood Transfusion, U Nemocnice 1, 12820 Prague, Czech Republic. $7 xx0125786
700    1_
$a Chrastinová, Leona $u Institute of Hematology and Blood Transfusion, U Nemocnice 1, 12820 Prague, Czech Republic. $7 xx0122084
700    1_
$a Pastva, Ondřej $u Institute of Hematology and Blood Transfusion, U Nemocnice 1, 12820 Prague, Czech Republic. $7 _AN094418
700    1_
$a Pimková, Kristýna $u Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberská 57, 18251 Prague, Czech Republic; Institute of Hematology and Blood Transfusion, U Nemocnice 1, 12820 Prague, Czech Republic. $7 xx0128195
700    1_
$a Dostálová, Michaela $u Institute of Hematology and Blood Transfusion, U Nemocnice 1, 12820 Prague, Czech Republic. $7 xx0164071
700    1_
$a Dyr, Jan Evangelista, $u Institute of Hematology and Blood Transfusion, U Nemocnice 1, 12820 Prague, Czech Republic. $d 1946-2021 $7 xx0060262
700    1_
$a Homola, Jiří $u Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberská 57, 18251 Prague, Czech Republic. Electronic address: homola@ufe.cz. $7 xx0039276
773    0_
$w MED00006627 $t Biosensors & bioelectronics $x 1873-4235 $g Roč. 70, č. - (2015), s. 226-231
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25829219 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20160408 $b ABA008
991    __
$a 20191029110343 $b ABA008
999    __
$a ok $b bmc $g 1113808 $s 934747
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 70 $c - $d 226-231 $e 20150317 $i 1873-4235 $m Biosensors & bioelectronics $n Biosens Bioelectron $x MED00006627
GRA    __
$a NT13847 $p MZ0
LZP    __
$a Pubmed-20160408

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...