-
Je něco špatně v tomto záznamu ?
Rapid and sensitive detection of multiple microRNAs in cell lysate by low-fouling surface plasmon resonance biosensor
H. Vaisocherová, H. Šípová, I. Víšová, M. Bocková, T. Špringer, ML. Ermini, X. Song, Z. Krejčík, L. Chrastinová, O. Pastva, K. Pimková, M. Dostálová Merkerová, JE. Dyr, J. Homola,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
NT13847
MZ0
CEP - Centrální evidence projektů
- MeSH
- akrylamidy chemie MeSH
- analýza selhání vybavení MeSH
- biokompatibilní potahované materiály chemická syntéza MeSH
- biosenzitivní techniky přístrojové vybavení MeSH
- design vybavení MeSH
- frakcionace buněk MeSH
- komplexní směsi analýza MeSH
- mikro RNA analýza chemie genetika MeSH
- polymery chemie MeSH
- povrchová plasmonová rezonance přístrojové vybavení MeSH
- reprodukovatelnost výsledků MeSH
- senzitivita a specificita MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We report an ultra-low fouling surface plasmon resonance imaging (SPRi) biosensor for the rapid simultaneous detection of multiple miRNAs in erythrocyte lysate (EL) at subpicomolar levels without need of RNA extraction. The SPRi chips were coated with ultra-low fouling functionalizable poly(carboxybetaine acrylamide) (pCBAA) brushes having optimized thicknesses and directly functionalized with amino-modified oligonucleotide probes. We have characterized the effect of the brush thickness on the probe loading capacity: a loading capacity of ~9.8×10(12) probes/cm(2) was achieved for pCBAA having a thickness of ~40 nm. The probe-functionalized sensor also exhibited a high resistance to fouling from ~90% EL samples (<2 ng/cm(2)). A two-step detection assay was employed for multiplexed miRNA detection in EL. Specifically, the assay consisted of (i) a sandwich-type hybridization of the probe-functionalized pCBAA with target miRNA in EL (bound to biotinylated oligonucleotides) and (ii) the capture of streptavidin-functionalized gold nanoparticles to the aforementioned biotinylated probes. We have demonstrated that this approach enables the detection of miRNAs in EL at concentrations as low as 0.5 pM. Finally, we have confirmed the detection of four endogenous miRNAs representing a set of potential miRNA biomarkers of myelodysplastic syndrome (MDS) in clinical EL samples (miR-16, miR-181, miR-34a, and miR-125b). The results revealed significantly higher levels of miR-16 in all the clinical EL samples compared to the other measured miRNAs.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16010379
- 003
- CZ-PrNML
- 005
- 20191029105904.0
- 007
- ta
- 008
- 160408s2015 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.bios.2015.03.038 $2 doi
- 024 7_
- $a 10.1016/j.bios.2015.03.038 $2 doi
- 035 __
- $a (PubMed)25829219
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Vaisocherová, Hana $u Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberská 57, 18251 Prague, Czech Republic.
- 245 10
- $a Rapid and sensitive detection of multiple microRNAs in cell lysate by low-fouling surface plasmon resonance biosensor / $c H. Vaisocherová, H. Šípová, I. Víšová, M. Bocková, T. Špringer, ML. Ermini, X. Song, Z. Krejčík, L. Chrastinová, O. Pastva, K. Pimková, M. Dostálová Merkerová, JE. Dyr, J. Homola,
- 520 9_
- $a We report an ultra-low fouling surface plasmon resonance imaging (SPRi) biosensor for the rapid simultaneous detection of multiple miRNAs in erythrocyte lysate (EL) at subpicomolar levels without need of RNA extraction. The SPRi chips were coated with ultra-low fouling functionalizable poly(carboxybetaine acrylamide) (pCBAA) brushes having optimized thicknesses and directly functionalized with amino-modified oligonucleotide probes. We have characterized the effect of the brush thickness on the probe loading capacity: a loading capacity of ~9.8×10(12) probes/cm(2) was achieved for pCBAA having a thickness of ~40 nm. The probe-functionalized sensor also exhibited a high resistance to fouling from ~90% EL samples (<2 ng/cm(2)). A two-step detection assay was employed for multiplexed miRNA detection in EL. Specifically, the assay consisted of (i) a sandwich-type hybridization of the probe-functionalized pCBAA with target miRNA in EL (bound to biotinylated oligonucleotides) and (ii) the capture of streptavidin-functionalized gold nanoparticles to the aforementioned biotinylated probes. We have demonstrated that this approach enables the detection of miRNAs in EL at concentrations as low as 0.5 pM. Finally, we have confirmed the detection of four endogenous miRNAs representing a set of potential miRNA biomarkers of myelodysplastic syndrome (MDS) in clinical EL samples (miR-16, miR-181, miR-34a, and miR-125b). The results revealed significantly higher levels of miR-16 in all the clinical EL samples compared to the other measured miRNAs.
- 650 _2
- $a akrylamidy $x chemie $7 D000178
- 650 _2
- $a biosenzitivní techniky $x přístrojové vybavení $7 D015374
- 650 _2
- $a frakcionace buněk $7 D002458
- 650 _2
- $a biokompatibilní potahované materiály $x chemická syntéza $7 D020099
- 650 _2
- $a komplexní směsi $x analýza $7 D045424
- 650 _2
- $a design vybavení $7 D004867
- 650 _2
- $a analýza selhání vybavení $7 D019544
- 650 _2
- $a mikro RNA $x analýza $x chemie $x genetika $7 D035683
- 650 _2
- $a polymery $x chemie $7 D011108
- 650 _2
- $a reprodukovatelnost výsledků $7 D015203
- 650 _2
- $a senzitivita a specificita $7 D012680
- 650 _2
- $a povrchová plasmonová rezonance $x přístrojové vybavení $7 D020349
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Šípová, Hana $u Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberská 57, 18251 Prague, Czech Republic. $7 xx0222979
- 700 1_
- $a Víšová, Ivana $u Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberská 57, 18251 Prague, Czech Republic.
- 700 1_
- $a Bocková, Markéta $u Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberská 57, 18251 Prague, Czech Republic.
- 700 1_
- $a Špringer, Tomáš $u Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberská 57, 18251 Prague, Czech Republic. $7 xx0248514
- 700 1_
- $a Ermini, Maria Laura $u Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberská 57, 18251 Prague, Czech Republic.
- 700 1_
- $a Song, Xue $u Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberská 57, 18251 Prague, Czech Republic.
- 700 1_
- $a Krejčík, Zdeněk $u Institute of Hematology and Blood Transfusion, U Nemocnice 1, 12820 Prague, Czech Republic. $7 xx0125786
- 700 1_
- $a Chrastinová, Leona $u Institute of Hematology and Blood Transfusion, U Nemocnice 1, 12820 Prague, Czech Republic. $7 xx0122084
- 700 1_
- $a Pastva, Ondřej $u Institute of Hematology and Blood Transfusion, U Nemocnice 1, 12820 Prague, Czech Republic. $7 _AN094418
- 700 1_
- $a Pimková, Kristýna $u Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberská 57, 18251 Prague, Czech Republic; Institute of Hematology and Blood Transfusion, U Nemocnice 1, 12820 Prague, Czech Republic. $7 xx0128195
- 700 1_
- $a Dostálová, Michaela $u Institute of Hematology and Blood Transfusion, U Nemocnice 1, 12820 Prague, Czech Republic. $7 xx0164071
- 700 1_
- $a Dyr, Jan Evangelista, $u Institute of Hematology and Blood Transfusion, U Nemocnice 1, 12820 Prague, Czech Republic. $d 1946-2021 $7 xx0060262
- 700 1_
- $a Homola, Jiří $u Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberská 57, 18251 Prague, Czech Republic. Electronic address: homola@ufe.cz. $7 xx0039276
- 773 0_
- $w MED00006627 $t Biosensors & bioelectronics $x 1873-4235 $g Roč. 70, č. - (2015), s. 226-231
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25829219 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20160408 $b ABA008
- 991 __
- $a 20191029110343 $b ABA008
- 999 __
- $a ok $b bmc $g 1113808 $s 934747
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 70 $c - $d 226-231 $e 20150317 $i 1873-4235 $m Biosensors & bioelectronics $n Biosens Bioelectron $x MED00006627
- GRA __
- $a NT13847 $p MZ0
- LZP __
- $a Pubmed-20160408