-
Something wrong with this record ?
Rapid and sensitive detection of multiple microRNAs in cell lysate by low-fouling surface plasmon resonance biosensor
H. Vaisocherová, H. Šípová, I. Víšová, M. Bocková, T. Špringer, ML. Ermini, X. Song, Z. Krejčík, L. Chrastinová, O. Pastva, K. Pimková, M. Dostálová Merkerová, JE. Dyr, J. Homola,
Language English Country England, Great Britain
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
NT13847
MZ0
CEP Register
- MeSH
- Acrylamides chemistry MeSH
- Equipment Failure Analysis MeSH
- Coated Materials, Biocompatible chemical synthesis MeSH
- Biosensing Techniques instrumentation MeSH
- Equipment Design MeSH
- Cell Fractionation MeSH
- Complex Mixtures analysis MeSH
- MicroRNAs analysis chemistry genetics MeSH
- Polymers chemistry MeSH
- Surface Plasmon Resonance instrumentation MeSH
- Reproducibility of Results MeSH
- Sensitivity and Specificity MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
We report an ultra-low fouling surface plasmon resonance imaging (SPRi) biosensor for the rapid simultaneous detection of multiple miRNAs in erythrocyte lysate (EL) at subpicomolar levels without need of RNA extraction. The SPRi chips were coated with ultra-low fouling functionalizable poly(carboxybetaine acrylamide) (pCBAA) brushes having optimized thicknesses and directly functionalized with amino-modified oligonucleotide probes. We have characterized the effect of the brush thickness on the probe loading capacity: a loading capacity of ~9.8×10(12) probes/cm(2) was achieved for pCBAA having a thickness of ~40 nm. The probe-functionalized sensor also exhibited a high resistance to fouling from ~90% EL samples (<2 ng/cm(2)). A two-step detection assay was employed for multiplexed miRNA detection in EL. Specifically, the assay consisted of (i) a sandwich-type hybridization of the probe-functionalized pCBAA with target miRNA in EL (bound to biotinylated oligonucleotides) and (ii) the capture of streptavidin-functionalized gold nanoparticles to the aforementioned biotinylated probes. We have demonstrated that this approach enables the detection of miRNAs in EL at concentrations as low as 0.5 pM. Finally, we have confirmed the detection of four endogenous miRNAs representing a set of potential miRNA biomarkers of myelodysplastic syndrome (MDS) in clinical EL samples (miR-16, miR-181, miR-34a, and miR-125b). The results revealed significantly higher levels of miR-16 in all the clinical EL samples compared to the other measured miRNAs.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16010379
- 003
- CZ-PrNML
- 005
- 20191029105904.0
- 007
- ta
- 008
- 160408s2015 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.bios.2015.03.038 $2 doi
- 024 7_
- $a 10.1016/j.bios.2015.03.038 $2 doi
- 035 __
- $a (PubMed)25829219
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Vaisocherová, Hana $u Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberská 57, 18251 Prague, Czech Republic.
- 245 10
- $a Rapid and sensitive detection of multiple microRNAs in cell lysate by low-fouling surface plasmon resonance biosensor / $c H. Vaisocherová, H. Šípová, I. Víšová, M. Bocková, T. Špringer, ML. Ermini, X. Song, Z. Krejčík, L. Chrastinová, O. Pastva, K. Pimková, M. Dostálová Merkerová, JE. Dyr, J. Homola,
- 520 9_
- $a We report an ultra-low fouling surface plasmon resonance imaging (SPRi) biosensor for the rapid simultaneous detection of multiple miRNAs in erythrocyte lysate (EL) at subpicomolar levels without need of RNA extraction. The SPRi chips were coated with ultra-low fouling functionalizable poly(carboxybetaine acrylamide) (pCBAA) brushes having optimized thicknesses and directly functionalized with amino-modified oligonucleotide probes. We have characterized the effect of the brush thickness on the probe loading capacity: a loading capacity of ~9.8×10(12) probes/cm(2) was achieved for pCBAA having a thickness of ~40 nm. The probe-functionalized sensor also exhibited a high resistance to fouling from ~90% EL samples (<2 ng/cm(2)). A two-step detection assay was employed for multiplexed miRNA detection in EL. Specifically, the assay consisted of (i) a sandwich-type hybridization of the probe-functionalized pCBAA with target miRNA in EL (bound to biotinylated oligonucleotides) and (ii) the capture of streptavidin-functionalized gold nanoparticles to the aforementioned biotinylated probes. We have demonstrated that this approach enables the detection of miRNAs in EL at concentrations as low as 0.5 pM. Finally, we have confirmed the detection of four endogenous miRNAs representing a set of potential miRNA biomarkers of myelodysplastic syndrome (MDS) in clinical EL samples (miR-16, miR-181, miR-34a, and miR-125b). The results revealed significantly higher levels of miR-16 in all the clinical EL samples compared to the other measured miRNAs.
- 650 _2
- $a akrylamidy $x chemie $7 D000178
- 650 _2
- $a biosenzitivní techniky $x přístrojové vybavení $7 D015374
- 650 _2
- $a frakcionace buněk $7 D002458
- 650 _2
- $a biokompatibilní potahované materiály $x chemická syntéza $7 D020099
- 650 _2
- $a komplexní směsi $x analýza $7 D045424
- 650 _2
- $a design vybavení $7 D004867
- 650 _2
- $a analýza selhání vybavení $7 D019544
- 650 _2
- $a mikro RNA $x analýza $x chemie $x genetika $7 D035683
- 650 _2
- $a polymery $x chemie $7 D011108
- 650 _2
- $a reprodukovatelnost výsledků $7 D015203
- 650 _2
- $a senzitivita a specificita $7 D012680
- 650 _2
- $a povrchová plasmonová rezonance $x přístrojové vybavení $7 D020349
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Šípová, Hana $u Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberská 57, 18251 Prague, Czech Republic. $7 xx0222979
- 700 1_
- $a Víšová, Ivana $u Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberská 57, 18251 Prague, Czech Republic.
- 700 1_
- $a Bocková, Markéta $u Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberská 57, 18251 Prague, Czech Republic.
- 700 1_
- $a Špringer, Tomáš $u Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberská 57, 18251 Prague, Czech Republic. $7 xx0248514
- 700 1_
- $a Ermini, Maria Laura $u Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberská 57, 18251 Prague, Czech Republic.
- 700 1_
- $a Song, Xue $u Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberská 57, 18251 Prague, Czech Republic.
- 700 1_
- $a Krejčík, Zdeněk $u Institute of Hematology and Blood Transfusion, U Nemocnice 1, 12820 Prague, Czech Republic. $7 xx0125786
- 700 1_
- $a Chrastinová, Leona $u Institute of Hematology and Blood Transfusion, U Nemocnice 1, 12820 Prague, Czech Republic. $7 xx0122084
- 700 1_
- $a Pastva, Ondřej $u Institute of Hematology and Blood Transfusion, U Nemocnice 1, 12820 Prague, Czech Republic. $7 _AN094418
- 700 1_
- $a Pimková, Kristýna $u Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberská 57, 18251 Prague, Czech Republic; Institute of Hematology and Blood Transfusion, U Nemocnice 1, 12820 Prague, Czech Republic. $7 xx0128195
- 700 1_
- $a Dostálová, Michaela $u Institute of Hematology and Blood Transfusion, U Nemocnice 1, 12820 Prague, Czech Republic. $7 xx0164071
- 700 1_
- $a Dyr, Jan Evangelista, $u Institute of Hematology and Blood Transfusion, U Nemocnice 1, 12820 Prague, Czech Republic. $d 1946-2021 $7 xx0060262
- 700 1_
- $a Homola, Jiří $u Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberská 57, 18251 Prague, Czech Republic. Electronic address: homola@ufe.cz. $7 xx0039276
- 773 0_
- $w MED00006627 $t Biosensors & bioelectronics $x 1873-4235 $g Roč. 70, č. - (2015), s. 226-231
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25829219 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20160408 $b ABA008
- 991 __
- $a 20191029110343 $b ABA008
- 999 __
- $a ok $b bmc $g 1113808 $s 934747
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 70 $c - $d 226-231 $e 20150317 $i 1873-4235 $m Biosensors & bioelectronics $n Biosens Bioelectron $x MED00006627
- GRA __
- $a NT13847 $p MZ0
- LZP __
- $a Pubmed-20160408