• Something wrong with this record ?

Differences between magnitudes and health impacts of BC emissions across the United States using 12 km scale seasonal source apportionment

MD. Turner, DK. Henze, A. Hakami, S. Zhao, J. Resler, GR. Carmichael, CO. Stanier, J. Baek, A. Sandu, AG. Russell, A. Nenes, GR. Jeong, SL. Capps, PB. Percell, RW. Pinder, SL. Napelenok, JO. Bash, T. Chai,

. 2015 ; 49 (7) : 4362-71. [pub] 20150318

Language English Country United States

Document type Comparative Study, Journal Article, Research Support, U.S. Gov't, Non-P.H.S.

Recent assessments have analyzed the health impacts of PM2.5 from emissions from different locations and sectors using simplified or reduced-form air quality models. Here we present an alternative approach using the adjoint of the Community Multiscale Air Quality (CMAQ) model, which provides source-receptor relationships at highly resolved sectoral, spatial, and temporal scales. While damage resulting from anthropogenic emissions of BC is strongly correlated with population and premature death, we found little correlation between damage and emission magnitude, suggesting that controls on the largest emissions may not be the most efficient means of reducing damage resulting from anthropogenic BC emissions. Rather, the best proxy for locations with damaging BC emissions is locations where premature deaths occur. Onroad diesel and nonroad vehicle emissions are the largest contributors to premature deaths attributed to exposure to BC, while onroad gasoline emissions cause the highest deaths per amount emitted. Emissions in fall and winter contribute to more premature deaths (and more per amount emitted) than emissions in spring and summer. Overall, these results show the value of the high-resolution source attribution for determining the locations, seasons, and sectors for which BC emission controls have the most effective health benefits.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16010506
003      
CZ-PrNML
005      
20160413113018.0
007      
ta
008      
160408s2015 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1021/es505968b $2 doi
024    7_
$a 10.1021/es505968b $2 doi
035    __
$a (PubMed)25729920
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Turner, Matthew D $u †Mechanical Engineering Department, University of Colorado, Boulder, Colorado 80309, United States.
245    10
$a Differences between magnitudes and health impacts of BC emissions across the United States using 12 km scale seasonal source apportionment / $c MD. Turner, DK. Henze, A. Hakami, S. Zhao, J. Resler, GR. Carmichael, CO. Stanier, J. Baek, A. Sandu, AG. Russell, A. Nenes, GR. Jeong, SL. Capps, PB. Percell, RW. Pinder, SL. Napelenok, JO. Bash, T. Chai,
520    9_
$a Recent assessments have analyzed the health impacts of PM2.5 from emissions from different locations and sectors using simplified or reduced-form air quality models. Here we present an alternative approach using the adjoint of the Community Multiscale Air Quality (CMAQ) model, which provides source-receptor relationships at highly resolved sectoral, spatial, and temporal scales. While damage resulting from anthropogenic emissions of BC is strongly correlated with population and premature death, we found little correlation between damage and emission magnitude, suggesting that controls on the largest emissions may not be the most efficient means of reducing damage resulting from anthropogenic BC emissions. Rather, the best proxy for locations with damaging BC emissions is locations where premature deaths occur. Onroad diesel and nonroad vehicle emissions are the largest contributors to premature deaths attributed to exposure to BC, while onroad gasoline emissions cause the highest deaths per amount emitted. Emissions in fall and winter contribute to more premature deaths (and more per amount emitted) than emissions in spring and summer. Overall, these results show the value of the high-resolution source attribution for determining the locations, seasons, and sectors for which BC emission controls have the most effective health benefits.
650    _2
$a látky znečišťující vzduch $x škodlivé účinky $7 D000393
650    _2
$a monitorování životního prostředí $7 D004784
650    _2
$a benzin $x škodlivé účinky $7 D005742
650    _2
$a lidé $7 D006801
650    12
$a teoretické modely $7 D008962
650    12
$a předčasná smrt $7 D061213
650    _2
$a roční období $7 D012621
650    _2
$a saze $x škodlivé účinky $7 D053260
650    _2
$a výfukové emise vozidel $x toxicita $7 D001335
651    _2
$a Spojené státy americké $7 D014481
655    _2
$a srovnávací studie $7 D003160
655    _2
$a časopisecké články $7 D016428
655    _2
$a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
700    1_
$a Henze, Daven K $u †Mechanical Engineering Department, University of Colorado, Boulder, Colorado 80309, United States.
700    1_
$a Hakami, Amir $u ‡Department of Civil and Environmental Engineering, Carleton University, Ottawa, Ontario K1S 5B6, Canada.
700    1_
$a Zhao, Shunliu $u ‡Department of Civil and Environmental Engineering, Carleton University, Ottawa, Ontario K1S 5B6, Canada.
700    1_
$a Resler, Jaroslav $u §Nonlinear Modeling, Institute of Computer Science, Prague 182 07, Czech Republic.
700    1_
$a Carmichael, Gregory R $u ∥Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242, United States.
700    1_
$a Stanier, Charles O $u ∥Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242, United States.
700    1_
$a Baek, Jaemeen $u ∥Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242, United States.
700    1_
$a Sandu, Adrian $u ⊥Computer Science, Virginia Tech, Blacksburg, Virginia 24061, United States.
700    1_
$a Russell, Armistead G
700    1_
$a Nenes, Athanasios $u ▲School of Chemical and Biomolecular Engineering, Georgia Tech, Atlanta, Georgia 30332, United States.
700    1_
$a Jeong, Gill-Ran $u ◇Korea Institute of Atmospheric Prediction Systems, Seoul 156-849, Republic of Korea.
700    1_
$a Capps, Shannon L $u □Atmospheric Modeling and Analysis Division, U.S. EPA, Research Triangle Park, North Carolina 27711, United States.
700    1_
$a Percell, Peter B $u ◆Department of Geosciences, University of Houston, Houston, Texas 77004, United States.
700    1_
$a Pinder, Rob W $u □Atmospheric Modeling and Analysis Division, U.S. EPA, Research Triangle Park, North Carolina 27711, United States.
700    1_
$a Napelenok, Sergey L $u □Atmospheric Modeling and Analysis Division, U.S. EPA, Research Triangle Park, North Carolina 27711, United States.
700    1_
$a Bash, Jesse O $u □Atmospheric Modeling and Analysis Division, U.S. EPA, Research Triangle Park, North Carolina 27711, United States.
700    1_
$a Chai, Tianfeng $u ■College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, Maryland 20742, United States. △Air Resources Laboratory, National Oceanic and Atmospheric Administration, College Park, Maryland 20740, United States.
773    0_
$w MED00001559 $t Environmental science & technology $x 1520-5851 $g Roč. 49, č. 7 (2015), s. 4362-71
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25729920 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20160408 $b ABA008
991    __
$a 20160413113102 $b ABA008
999    __
$a ok $b bmc $g 1113935 $s 934874
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 49 $c 7 $d 4362-71 $e 20150318 $i 1520-5851 $m Environmental science & technology $n Environ Sci Technol $x MED00001559
LZP    __
$a Pubmed-20160408

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...