• Je něco špatně v tomto záznamu ?

Exploring task-related variability in fMRI data using fluctuations in power spectrum of simultaneously acquired EEG

R. Labounek, M. Lamoš, R. Mareček, M. Brázdil, J. Jan,

. 2015 ; 245 (-) : 125-36. [pub] 20150224

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc16010512

BACKGROUND: The paper deals with joint analysis of fMRI and scalp EEG data, simultaneously acquired during event-related oddball experiment. The analysis is based on deriving temporal sequences of EEG powers in individual frequency bands for the selected EEG electrodes and using them as regressors in the general linear model (GLM). NEW METHOD: Given the infrequent use of EEG spectral changes to explore task-related variability, we focused on the aspects of parameter setting during EEG regressor calculation and searched for such parameters that can detect task-related variability in EEG-fMRI data. We proposed a novel method that uses relative EEG power in GLM. RESULTS: Parameter, the type of power value, has a direct impact as to whether task-related variability is detected or not. For relative power, the final results are sensitive to the choice of frequency band of interest. The electrode selection also has certain impact; however, the impact is not crucial. It is insensitive to the choice of EEG power series temporal weighting step. Relative EEG power characterizes the experimental task activity better than the absolute power. Absolute EEG power contains broad spectrum component. Task-related relative power spectral formulas were derived. COMPARISON WITH EXISTING METHODS: For particular set of parameters, our results are consistent with previously published papers. Our work expands current knowledge by new findings in spectral patterns of different brain processes related to the experimental task. CONCLUSIONS: To make analysis to be sensitive to task-related variability, the parameters type of power value and frequency band should be set properly.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16010512
003      
CZ-PrNML
005      
20230525141837.0
007      
ta
008      
160408s2015 ne f 000 0|engg|
009      
AR
024    7_
$a 10.1016/j.jneumeth.2015.02.016 $2 doi
024    7_
$a 10.1016/j.jneumeth.2015.02.016 $2 doi
035    __
$a (PubMed)25724321
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Labounek, René $u Department of Biomedical Engineering, Brno University of Technology, Faculty of Electrical Engineering and Communication, Technická 12, Brno, Czech Republic. Electronic address: labounek@phd.feec.vutbr.cz.
245    10
$a Exploring task-related variability in fMRI data using fluctuations in power spectrum of simultaneously acquired EEG / $c R. Labounek, M. Lamoš, R. Mareček, M. Brázdil, J. Jan,
520    9_
$a BACKGROUND: The paper deals with joint analysis of fMRI and scalp EEG data, simultaneously acquired during event-related oddball experiment. The analysis is based on deriving temporal sequences of EEG powers in individual frequency bands for the selected EEG electrodes and using them as regressors in the general linear model (GLM). NEW METHOD: Given the infrequent use of EEG spectral changes to explore task-related variability, we focused on the aspects of parameter setting during EEG regressor calculation and searched for such parameters that can detect task-related variability in EEG-fMRI data. We proposed a novel method that uses relative EEG power in GLM. RESULTS: Parameter, the type of power value, has a direct impact as to whether task-related variability is detected or not. For relative power, the final results are sensitive to the choice of frequency band of interest. The electrode selection also has certain impact; however, the impact is not crucial. It is insensitive to the choice of EEG power series temporal weighting step. Relative EEG power characterizes the experimental task activity better than the absolute power. Absolute EEG power contains broad spectrum component. Task-related relative power spectral formulas were derived. COMPARISON WITH EXISTING METHODS: For particular set of parameters, our results are consistent with previously published papers. Our work expands current knowledge by new findings in spectral patterns of different brain processes related to the experimental task. CONCLUSIONS: To make analysis to be sensitive to task-related variability, the parameters type of power value and frequency band should be set properly.
650    _2
$a dospělí $7 D000328
650    _2
$a mozek $x krevní zásobení $x fyziologie $7 D001921
650    12
$a mapování mozku $7 D001931
650    _2
$a mozkové vlny $x fyziologie $7 D058256
650    _2
$a elektroencefalografie $7 D004569
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a lidé $7 D006801
650    _2
$a počítačové zpracování obrazu $7 D007091
650    _2
$a magnetická rezonanční tomografie $7 D008279
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a kyslík $7 D010100
650    12
$a spektrální analýza $7 D013057
650    _2
$a mladý dospělý $7 D055815
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Lamoš, Martin $u Department of Biomedical Engineering, Brno University of Technology, Faculty of Electrical Engineering and Communication, Technická 12, Brno, Czech Republic.
700    1_
$a Mareček, Radek $u CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
700    1_
$a Brázdil, Milan $u CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
700    1_
$a Jan, Jiří, $d 1941- $u Department of Biomedical Engineering, Brno University of Technology, Faculty of Electrical Engineering and Communication, Technická 12, Brno, Czech Republic. $7 jn20000710059
773    0_
$w MED00002841 $t Journal of neuroscience methods $x 1872-678X $g Roč. 245, č. - (2015), s. 125-36
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25724321 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20160408 $b ABA008
991    __
$a 20230525141831 $b ABA008
999    __
$a ok $b bmc $g 1113941 $s 934880
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 245 $c - $d 125-36 $e 20150224 $i 1872-678X $m Journal of neuroscience methods $n J Neurosci Methods $x MED00002841
LZP    __
$a Pubmed-20160408

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...