-
Je něco špatně v tomto záznamu ?
Exploring task-related variability in fMRI data using fluctuations in power spectrum of simultaneously acquired EEG
R. Labounek, M. Lamoš, R. Mareček, M. Brázdil, J. Jan,
Jazyk angličtina Země Nizozemsko
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- dospělí MeSH
- elektroencefalografie MeSH
- kyslík MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mapování mozku * MeSH
- mladý dospělý MeSH
- mozek krevní zásobení fyziologie MeSH
- mozkové vlny fyziologie MeSH
- počítačové zpracování obrazu MeSH
- spektrální analýza * MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: The paper deals with joint analysis of fMRI and scalp EEG data, simultaneously acquired during event-related oddball experiment. The analysis is based on deriving temporal sequences of EEG powers in individual frequency bands for the selected EEG electrodes and using them as regressors in the general linear model (GLM). NEW METHOD: Given the infrequent use of EEG spectral changes to explore task-related variability, we focused on the aspects of parameter setting during EEG regressor calculation and searched for such parameters that can detect task-related variability in EEG-fMRI data. We proposed a novel method that uses relative EEG power in GLM. RESULTS: Parameter, the type of power value, has a direct impact as to whether task-related variability is detected or not. For relative power, the final results are sensitive to the choice of frequency band of interest. The electrode selection also has certain impact; however, the impact is not crucial. It is insensitive to the choice of EEG power series temporal weighting step. Relative EEG power characterizes the experimental task activity better than the absolute power. Absolute EEG power contains broad spectrum component. Task-related relative power spectral formulas were derived. COMPARISON WITH EXISTING METHODS: For particular set of parameters, our results are consistent with previously published papers. Our work expands current knowledge by new findings in spectral patterns of different brain processes related to the experimental task. CONCLUSIONS: To make analysis to be sensitive to task-related variability, the parameters type of power value and frequency band should be set properly.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16010512
- 003
- CZ-PrNML
- 005
- 20230525141837.0
- 007
- ta
- 008
- 160408s2015 ne f 000 0|engg|
- 009
- AR
- 024 7_
- $a 10.1016/j.jneumeth.2015.02.016 $2 doi
- 024 7_
- $a 10.1016/j.jneumeth.2015.02.016 $2 doi
- 035 __
- $a (PubMed)25724321
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Labounek, René $u Department of Biomedical Engineering, Brno University of Technology, Faculty of Electrical Engineering and Communication, Technická 12, Brno, Czech Republic. Electronic address: labounek@phd.feec.vutbr.cz.
- 245 10
- $a Exploring task-related variability in fMRI data using fluctuations in power spectrum of simultaneously acquired EEG / $c R. Labounek, M. Lamoš, R. Mareček, M. Brázdil, J. Jan,
- 520 9_
- $a BACKGROUND: The paper deals with joint analysis of fMRI and scalp EEG data, simultaneously acquired during event-related oddball experiment. The analysis is based on deriving temporal sequences of EEG powers in individual frequency bands for the selected EEG electrodes and using them as regressors in the general linear model (GLM). NEW METHOD: Given the infrequent use of EEG spectral changes to explore task-related variability, we focused on the aspects of parameter setting during EEG regressor calculation and searched for such parameters that can detect task-related variability in EEG-fMRI data. We proposed a novel method that uses relative EEG power in GLM. RESULTS: Parameter, the type of power value, has a direct impact as to whether task-related variability is detected or not. For relative power, the final results are sensitive to the choice of frequency band of interest. The electrode selection also has certain impact; however, the impact is not crucial. It is insensitive to the choice of EEG power series temporal weighting step. Relative EEG power characterizes the experimental task activity better than the absolute power. Absolute EEG power contains broad spectrum component. Task-related relative power spectral formulas were derived. COMPARISON WITH EXISTING METHODS: For particular set of parameters, our results are consistent with previously published papers. Our work expands current knowledge by new findings in spectral patterns of different brain processes related to the experimental task. CONCLUSIONS: To make analysis to be sensitive to task-related variability, the parameters type of power value and frequency band should be set properly.
- 650 _2
- $a dospělí $7 D000328
- 650 _2
- $a mozek $x krevní zásobení $x fyziologie $7 D001921
- 650 12
- $a mapování mozku $7 D001931
- 650 _2
- $a mozkové vlny $x fyziologie $7 D058256
- 650 _2
- $a elektroencefalografie $7 D004569
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a počítačové zpracování obrazu $7 D007091
- 650 _2
- $a magnetická rezonanční tomografie $7 D008279
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a kyslík $7 D010100
- 650 12
- $a spektrální analýza $7 D013057
- 650 _2
- $a mladý dospělý $7 D055815
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Lamoš, Martin $u Department of Biomedical Engineering, Brno University of Technology, Faculty of Electrical Engineering and Communication, Technická 12, Brno, Czech Republic.
- 700 1_
- $a Mareček, Radek $u CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
- 700 1_
- $a Brázdil, Milan $u CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
- 700 1_
- $a Jan, Jiří, $d 1941- $u Department of Biomedical Engineering, Brno University of Technology, Faculty of Electrical Engineering and Communication, Technická 12, Brno, Czech Republic. $7 jn20000710059
- 773 0_
- $w MED00002841 $t Journal of neuroscience methods $x 1872-678X $g Roč. 245, č. - (2015), s. 125-36
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25724321 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20160408 $b ABA008
- 991 __
- $a 20230525141831 $b ABA008
- 999 __
- $a ok $b bmc $g 1113941 $s 934880
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 245 $c - $d 125-36 $e 20150224 $i 1872-678X $m Journal of neuroscience methods $n J Neurosci Methods $x MED00002841
- LZP __
- $a Pubmed-20160408