Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Influence of microbiome species in hard-to-heal wounds on disease severity and treatment duration

D. Chudobova, K. Cihalova, R. Guran, S. Dostalova, K. Smerkova, R. Vesely, J. Gumulec, M. Masarik, Z. Heger, V. Adam, R. Kizek,

. 2015 ; 19 (6) : 604-13. [pub] 20151027

Jazyk angličtina Země Brazílie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc16020178

BACKGROUND: Infections, mostly those associated with colonization of wound by different pathogenic microorganisms, are one of the most serious health complications during a medical treatment. Therefore, this study is focused on the isolation, characterization, and identification of microorganisms prevalent in superficial wounds of patients (n=50) presenting with bacterial infection. METHODS: After successful cultivation, bacteria were processed and analyzed. Initially the identification of the strains was performed through matrix-assisted laser desorption/ionization time-of-flight mass spectrometry based on comparison of protein profiles (2-30kDa) with database. Subsequently, bacterial strains from infected wounds were identified by both matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and sequencing of 16S rRNA gene 108. RESULTS: The most prevalent species was Staphylococcus aureus (70%), and out of those 11% turned out to be methicillin-resistant (mecA positive). Identified strains were compared with patients' diagnoses using the method of artificial neuronal network to assess the association between severity of infection and wound microbiome species composition. Artificial neuronal network was subsequently used to predict patients' prognosis (n=9) with 85% success. CONCLUSIONS: In all of 50 patients tested bacterial infections were identified. Based on the proposed artificial neuronal network we were able to predict the severity of the infection and length of the treatment.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16020178
003      
CZ-PrNML
005      
20160805121450.0
007      
ta
008      
160722s2015 bl f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.bjid.2015.08.013 $2 doi
024    7_
$a 10.1016/j.bjid.2015.08.013 $2 doi
035    __
$a (PubMed)26518264
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a bl
100    1_
$a Chudobova, Dagmar $u Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka, Czech Republic.
245    10
$a Influence of microbiome species in hard-to-heal wounds on disease severity and treatment duration / $c D. Chudobova, K. Cihalova, R. Guran, S. Dostalova, K. Smerkova, R. Vesely, J. Gumulec, M. Masarik, Z. Heger, V. Adam, R. Kizek,
520    9_
$a BACKGROUND: Infections, mostly those associated with colonization of wound by different pathogenic microorganisms, are one of the most serious health complications during a medical treatment. Therefore, this study is focused on the isolation, characterization, and identification of microorganisms prevalent in superficial wounds of patients (n=50) presenting with bacterial infection. METHODS: After successful cultivation, bacteria were processed and analyzed. Initially the identification of the strains was performed through matrix-assisted laser desorption/ionization time-of-flight mass spectrometry based on comparison of protein profiles (2-30kDa) with database. Subsequently, bacterial strains from infected wounds were identified by both matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and sequencing of 16S rRNA gene 108. RESULTS: The most prevalent species was Staphylococcus aureus (70%), and out of those 11% turned out to be methicillin-resistant (mecA positive). Identified strains were compared with patients' diagnoses using the method of artificial neuronal network to assess the association between severity of infection and wound microbiome species composition. Artificial neuronal network was subsequently used to predict patients' prognosis (n=9) with 85% success. CONCLUSIONS: In all of 50 patients tested bacterial infections were identified. Based on the proposed artificial neuronal network we were able to predict the severity of the infection and length of the treatment.
650    _2
$a dospělí $7 D000328
650    _2
$a senioři $7 D000368
650    _2
$a senioři nad 80 let $7 D000369
650    _2
$a techniky typizace bakterií $x metody $7 D015373
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a lidé $7 D006801
650    _2
$a mužské pohlaví $7 D008297
650    12
$a mikrobiota $7 D064307
650    _2
$a lidé středního věku $7 D008875
650    _2
$a neuronové sítě $7 D016571
650    _2
$a fylogeneze $7 D010802
650    _2
$a RNA ribozomální 16S $x genetika $7 D012336
650    _2
$a stupeň závažnosti nemoci $7 D012720
650    _2
$a časové faktory $7 D013997
650    _2
$a infekce v ráně $x mikrobiologie $7 D014946
650    _2
$a mladý dospělý $7 D055815
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Cihalova, Kristyna $u Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka, Czech Republic.
700    1_
$a Guran, Roman $u Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka, Czech Republic.
700    1_
$a Dostalova, Simona $u Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka, Czech Republic.
700    1_
$a Smerkova, Kristyna $u Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka, Czech Republic.
700    1_
$a Vesely, Radek $u Department of Traumatology at the Medical Faculty, Masaryk University and Trauma Hospital of Brno, Ponavka, Czech Republic.
700    1_
$a Gumulec, Jaromir $u Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice, Czech Republic.
700    1_
$a Masarik, Michal $u Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice, Czech Republic.
700    1_
$a Heger, Zbynek $u Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka, Czech Republic.
700    1_
$a Adam, Vojtěch $u Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka, Czech Republic. $7 xx0064599
700    1_
$a Kizek, Rene $u Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska, Czech Republic; Central European Institute of Technology, Brno University of Technology, Technicka, Czech Republic. Electronic address: kizek@sci.muni.cz.
773    0_
$w MED00165232 $t The Brazilian journal of infectious diseases an official publication of the Brazilian Society of Infectious Diseases $x 1678-4391 $g Roč. 19, č. 6 (2015), s. 604-13
856    41
$u https://pubmed.ncbi.nlm.nih.gov/26518264 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20160722 $b ABA008
991    __
$a 20160805121723 $b ABA008
999    __
$a ok $b bmc $g 1154848 $s 944706
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 19 $c 6 $d 604-13 $e 20151027 $i 1678-4391 $m The Brazilian journal of infectious diseases $n Braz. j. infect. dis. (Online) $x MED00165232
LZP    __
$a Pubmed-20160722

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...