-
Je něco špatně v tomto záznamu ?
Histone H1 Differentially Inhibits DNA Bending by Reduced and Oxidized HMGB1 Protein
M. Štros, E. Polanská, M. Kučírek, Š. Pospíšilová,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2006
Free Medical Journals
od 2006
Public Library of Science (PLoS)
od 2006
PubMed Central
od 2006
Europe PubMed Central
od 2006
ProQuest Central
od 2006-12-01
Open Access Digital Library
od 2006-01-01
Open Access Digital Library
od 2006-01-01
Open Access Digital Library
od 2006-10-01
Medline Complete (EBSCOhost)
od 2008-01-01
Nursing & Allied Health Database (ProQuest)
od 2006-12-01
Health & Medicine (ProQuest)
od 2006-12-01
Public Health Database (ProQuest)
od 2006-12-01
ROAD: Directory of Open Access Scholarly Resources
od 2006
- MeSH
- cystein genetika metabolismus MeSH
- histony chemie genetika metabolismus MeSH
- krysa rodu rattus MeSH
- molekulární modely MeSH
- mutace MeSH
- nukleozomy MeSH
- oxidace-redukce MeSH
- protein HMGB1 chemie genetika metabolismus MeSH
- superhelikální DNA metabolismus MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
HMGB1 protein and linker histone H1 have overlapping binding sites in the nucleosome. HMGB1 has been implicated in many DNA-dependent processes in chromatin involving binding of specific proteins, including transcription factors, to DNA sites pre-bent by HMGB1. HMGB1 can also act as an extracellular signaling molecule by promoting inflammation, tumor growth a metastasis. Many of the intra- and extracellular functions of HMGB1 depend on redox-sensitive cysteine residues of the protein. Here we report that mild oxidization of HMGB1 (and much less mutation of cysteines involved in disulphide bond formation) can severely compromise the functioning of the protein as a DNA chaperone by inhibiting its ability to unwind or bend DNA. Histone H1 (via the highly basic C-terminal domain) significantly inhibits DNA bending by the full-length HMGB1, and the inhibition is further enhanced upon oxidization of HMGB1. Interestingly, DNA bending by HMGB1 lacking the acidic C-tail (HMGB1ΔC) is much less affected by histone H1, but oxidization rendered DNA bending by HMGB1ΔC and HMGB1 equally prone for inhibition by histone H1. Possible consequences of histone H1-mediated inhibition of DNA bending by HMGB1 of different redox state for the functioning of chromatin are discussed.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16020262
- 003
- CZ-PrNML
- 005
- 20160722120003.0
- 007
- ta
- 008
- 160722s2015 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1371/journal.pone.0138774 $2 doi
- 024 7_
- $a 10.1371/journal.pone.0138774 $2 doi
- 035 __
- $a (PubMed)26406975
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Štros, Michal $u Laboratory of Analysis of Chromosomal Proteins, Institute of Biophysics, Academy of Science of the Czech Republic, Brno, Czech Republic.
- 245 10
- $a Histone H1 Differentially Inhibits DNA Bending by Reduced and Oxidized HMGB1 Protein / $c M. Štros, E. Polanská, M. Kučírek, Š. Pospíšilová,
- 520 9_
- $a HMGB1 protein and linker histone H1 have overlapping binding sites in the nucleosome. HMGB1 has been implicated in many DNA-dependent processes in chromatin involving binding of specific proteins, including transcription factors, to DNA sites pre-bent by HMGB1. HMGB1 can also act as an extracellular signaling molecule by promoting inflammation, tumor growth a metastasis. Many of the intra- and extracellular functions of HMGB1 depend on redox-sensitive cysteine residues of the protein. Here we report that mild oxidization of HMGB1 (and much less mutation of cysteines involved in disulphide bond formation) can severely compromise the functioning of the protein as a DNA chaperone by inhibiting its ability to unwind or bend DNA. Histone H1 (via the highly basic C-terminal domain) significantly inhibits DNA bending by the full-length HMGB1, and the inhibition is further enhanced upon oxidization of HMGB1. Interestingly, DNA bending by HMGB1 lacking the acidic C-tail (HMGB1ΔC) is much less affected by histone H1, but oxidization rendered DNA bending by HMGB1ΔC and HMGB1 equally prone for inhibition by histone H1. Possible consequences of histone H1-mediated inhibition of DNA bending by HMGB1 of different redox state for the functioning of chromatin are discussed.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a cystein $x genetika $x metabolismus $7 D003545
- 650 _2
- $a superhelikální DNA $x metabolismus $7 D004278
- 650 _2
- $a protein HMGB1 $x chemie $x genetika $x metabolismus $7 D024243
- 650 _2
- $a histony $x chemie $x genetika $x metabolismus $7 D006657
- 650 _2
- $a molekulární modely $7 D008958
- 650 _2
- $a mutace $7 D009154
- 650 _2
- $a nukleozomy $7 D009707
- 650 _2
- $a oxidace-redukce $7 D010084
- 650 _2
- $a vazba proteinů $7 D011485
- 650 _2
- $a krysa rodu Rattus $7 D051381
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Polanská, Eva $u Laboratory of Analysis of Chromosomal Proteins, Institute of Biophysics, Academy of Science of the Czech Republic, Brno, Czech Republic.
- 700 1_
- $a Kučírek, Martin $u Laboratory of Analysis of Chromosomal Proteins, Institute of Biophysics, Academy of Science of the Czech Republic, Brno, Czech Republic.
- 700 1_
- $a Pospíšilová, Šárka $u Central European Institute of Technology (CEITEC) Center of Molecular Medicine, Masaryk University, Brno, Czech Republic.
- 773 0_
- $w MED00180950 $t PloS one $x 1932-6203 $g Roč. 10, č. 9 (2015), s. e0138774
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/26406975 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20160722 $b ABA008
- 991 __
- $a 20160722120217 $b ABA008
- 999 __
- $a ok $b bmc $g 1154932 $s 944790
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 10 $c 9 $d e0138774 $e 20150925 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
- LZP __
- $a Pubmed-20160722