-
Je něco špatně v tomto záznamu ?
Reconciliation of Decision-Making Heuristics Based on Decision Trees Topologies and Incomplete Fuzzy Probabilities Sets
K. Doubravsky, M. Dohnal,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2006
Free Medical Journals
od 2006
Public Library of Science (PLoS)
od 2006
PubMed Central
od 2006
Europe PubMed Central
od 2006
ProQuest Central
od 2006-12-01
Open Access Digital Library
od 2006-10-01
Open Access Digital Library
od 2006-01-01
Open Access Digital Library
od 2006-01-01
Medline Complete (EBSCOhost)
od 2008-01-01
Nursing & Allied Health Database (ProQuest)
od 2006-12-01
Health & Medicine (ProQuest)
od 2006-12-01
Public Health Database (ProQuest)
od 2006-12-01
ROAD: Directory of Open Access Scholarly Resources
od 2006
- MeSH
- algoritmy MeSH
- fuzzy logika * MeSH
- heuristika fyziologie MeSH
- lidé MeSH
- metody pro podporu rozhodování MeSH
- pravděpodobnost MeSH
- rozhodovací stromy * MeSH
- rozhodování fyziologie MeSH
- teoretické modely MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Complex decision making tasks of different natures, e.g. economics, safety engineering, ecology and biology, are based on vague, sparse, partially inconsistent and subjective knowledge. Moreover, decision making economists / engineers are usually not willing to invest too much time into study of complex formal theories. They require such decisions which can be (re)checked by human like common sense reasoning. One important problem related to realistic decision making tasks are incomplete data sets required by the chosen decision making algorithm. This paper presents a relatively simple algorithm how some missing III (input information items) can be generated using mainly decision tree topologies and integrated into incomplete data sets. The algorithm is based on an easy to understand heuristics, e.g. a longer decision tree sub-path is less probable. This heuristic can solve decision problems under total ignorance, i.e. the decision tree topology is the only information available. But in a practice, isolated information items e.g. some vaguely known probabilities (e.g. fuzzy probabilities) are usually available. It means that a realistic problem is analysed under partial ignorance. The proposed algorithm reconciles topology related heuristics and additional fuzzy sets using fuzzy linear programming. The case study, represented by a tree with six lotteries and one fuzzy probability, is presented in details.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16020568
- 003
- CZ-PrNML
- 005
- 20160722120109.0
- 007
- ta
- 008
- 160722s2015 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1371/journal.pone.0131590 $2 doi
- 024 7_
- $a 10.1371/journal.pone.0131590 $2 doi
- 035 __
- $a (PubMed)26158662
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Doubravsky, Karel $u Department of Informatics, Faculty of Business and Management, Brno University of Technology, Brno, Czech Republic.
- 245 10
- $a Reconciliation of Decision-Making Heuristics Based on Decision Trees Topologies and Incomplete Fuzzy Probabilities Sets / $c K. Doubravsky, M. Dohnal,
- 520 9_
- $a Complex decision making tasks of different natures, e.g. economics, safety engineering, ecology and biology, are based on vague, sparse, partially inconsistent and subjective knowledge. Moreover, decision making economists / engineers are usually not willing to invest too much time into study of complex formal theories. They require such decisions which can be (re)checked by human like common sense reasoning. One important problem related to realistic decision making tasks are incomplete data sets required by the chosen decision making algorithm. This paper presents a relatively simple algorithm how some missing III (input information items) can be generated using mainly decision tree topologies and integrated into incomplete data sets. The algorithm is based on an easy to understand heuristics, e.g. a longer decision tree sub-path is less probable. This heuristic can solve decision problems under total ignorance, i.e. the decision tree topology is the only information available. But in a practice, isolated information items e.g. some vaguely known probabilities (e.g. fuzzy probabilities) are usually available. It means that a realistic problem is analysed under partial ignorance. The proposed algorithm reconciles topology related heuristics and additional fuzzy sets using fuzzy linear programming. The case study, represented by a tree with six lotteries and one fuzzy probability, is presented in details.
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a rozhodování $x fyziologie $7 D003657
- 650 _2
- $a metody pro podporu rozhodování $7 D003661
- 650 12
- $a rozhodovací stromy $7 D003663
- 650 12
- $a fuzzy logika $7 D017143
- 650 _2
- $a heuristika $x fyziologie $7 D000066506
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a teoretické modely $7 D008962
- 650 _2
- $a pravděpodobnost $7 D011336
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Dohnal, Mirko $u Department of Economics, Faculty of Business and Management, Brno University of Technology, Brno, Czech Republic.
- 773 0_
- $w MED00180950 $t PloS one $x 1932-6203 $g Roč. 10, č. 7 (2015), s. e0131590
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/26158662 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20160722 $b ABA008
- 991 __
- $a 20160722120323 $b ABA008
- 999 __
- $a ok $b bmc $g 1155238 $s 945096
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 10 $c 7 $d e0131590 $e 20150709 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
- LZP __
- $a Pubmed-20160722