Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Updating algal evolutionary relationships through plastid genome sequencing: did alveolate plastids emerge through endosymbiosis of an ochrophyte

T. Ševčíková, A. Horák, V. Klimeš, V. Zbránková, E. Demir-Hilton, S. Sudek, J. Jenkins, J. Schmutz, P. Přibyl, J. Fousek, Č. Vlček, BF. Lang, M. Oborník, AZ. Worden, M. Eliáš,

. 2015 ; 5 (-) : 10134. [pub] 20150528

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/bmc16020741

Algae with secondary plastids of a red algal origin, such as ochrophytes (photosynthetic stramenopiles), are diverse and ecologically important, yet their evolutionary history remains controversial. We sequenced plastid genomes of two ochrophytes, Ochromonas sp. CCMP1393 (Chrysophyceae) and Trachydiscus minutus (Eustigmatophyceae). A shared split of the clpC gene as well as phylogenomic analyses of concatenated protein sequences demonstrated that chrysophytes and eustigmatophytes form a clade, the Limnista, exhibiting an unexpectedly elevated rate of plastid gene evolution. Our analyses also indicate that the root of the ochrophyte phylogeny falls between the recently redefined Khakista and Phaeista assemblages. Taking advantage of the expanded sampling of plastid genome sequences, we revisited the phylogenetic position of the plastid of Vitrella brassicaformis, a member of Alveolata with the least derived plastid genome known for the whole group. The results varied depending on the dataset and phylogenetic method employed, but suggested that the Vitrella plastids emerged from a deep ochrophyte lineage rather than being derived vertically from a hypothetical plastid-bearing common ancestor of alveolates and stramenopiles. Thus, we hypothesize that the plastid in Vitrella, and potentially in other alveolates, may have been acquired by an endosymbiosis of an early ochrophyte.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16020741
003      
CZ-PrNML
005      
20160728115439.0
007      
ta
008      
160722s2015 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1038/srep10134 $2 doi
024    7_
$a 10.1038/srep10134 $2 doi
035    __
$a (PubMed)26017773
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Ševčíková, Tereza $u University of Ostrava, Faculty of Science, Department of Biology and Ecology, Life Science Research Centre, Chittussiho 10, 710 00 Ostrava, Czech Republic.
245    10
$a Updating algal evolutionary relationships through plastid genome sequencing: did alveolate plastids emerge through endosymbiosis of an ochrophyte / $c T. Ševčíková, A. Horák, V. Klimeš, V. Zbránková, E. Demir-Hilton, S. Sudek, J. Jenkins, J. Schmutz, P. Přibyl, J. Fousek, Č. Vlček, BF. Lang, M. Oborník, AZ. Worden, M. Eliáš,
520    9_
$a Algae with secondary plastids of a red algal origin, such as ochrophytes (photosynthetic stramenopiles), are diverse and ecologically important, yet their evolutionary history remains controversial. We sequenced plastid genomes of two ochrophytes, Ochromonas sp. CCMP1393 (Chrysophyceae) and Trachydiscus minutus (Eustigmatophyceae). A shared split of the clpC gene as well as phylogenomic analyses of concatenated protein sequences demonstrated that chrysophytes and eustigmatophytes form a clade, the Limnista, exhibiting an unexpectedly elevated rate of plastid gene evolution. Our analyses also indicate that the root of the ochrophyte phylogeny falls between the recently redefined Khakista and Phaeista assemblages. Taking advantage of the expanded sampling of plastid genome sequences, we revisited the phylogenetic position of the plastid of Vitrella brassicaformis, a member of Alveolata with the least derived plastid genome known for the whole group. The results varied depending on the dataset and phylogenetic method employed, but suggested that the Vitrella plastids emerged from a deep ochrophyte lineage rather than being derived vertically from a hypothetical plastid-bearing common ancestor of alveolates and stramenopiles. Thus, we hypothesize that the plastid in Vitrella, and potentially in other alveolates, may have been acquired by an endosymbiosis of an early ochrophyte.
650    _2
$a DNA $x chemie $x izolace a purifikace $7 D004247
650    _2
$a molekulární evoluce $7 D019143
650    12
$a genom plastidový $7 D054627
650    _2
$a fylogeneze $7 D010802
650    _2
$a plastidy $x genetika $7 D018087
650    _2
$a Rhodophyta $x genetika $7 D000461
650    _2
$a sekvenční analýza DNA $7 D017422
650    _2
$a Heterokontophyta $x klasifikace $x genetika $7 D058009
650    _2
$a symbióza $7 D013559
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
700    1_
$a Horák, Aleš $u 1] Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic [2] University of South Bohemia, Faculty of Science, Branišovská 1760, 370 05 České Budějovice, Czech Republic.
700    1_
$a Klimeš, Vladimír $u University of Ostrava, Faculty of Science, Department of Biology and Ecology, Life Science Research Centre, Chittussiho 10, 710 00 Ostrava, Czech Republic.
700    1_
$a Zbránková, Veronika $u University of Ostrava, Faculty of Science, Department of Biology and Ecology, Life Science Research Centre, Chittussiho 10, 710 00 Ostrava, Czech Republic.
700    1_
$a Demir-Hilton, Elif $u Monterey Bay Aquarium Research Institute (MBARI), Moss Landing, CA 95039, USA.
700    1_
$a Sudek, Sebastian $u Monterey Bay Aquarium Research Institute (MBARI), Moss Landing, CA 95039, USA.
700    1_
$a Jenkins, Jerry $u US Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA.
700    1_
$a Schmutz, Jeremy $u HudsonAlpha Institute for Biotechnology, 601 Genome Way NW, Huntsville, Alabama 35806, USA.
700    1_
$a Přibyl, Pavel $u Centre for Algology and Biorefinery Research Centre of Competence, Institute of Botany, Czech Academy of Sciences, Dukelská 135, 379 82 Třeboň, Czech Republic.
700    1_
$a Fousek, Jan $u Institute of Molecular Genetics, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic.
700    1_
$a Vlček, Čestmír $u Institute of Molecular Genetics, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic.
700    1_
$a Lang, B Franz $u Département de Biochimie, Centre Robert-Cedergren, Université de Montréal, 2900 Boulevard Edouard Montpetit, Montréal, Québec, H3C 3J7, Canada.
700    1_
$a Oborník, Miroslav $u 1] Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic [2] University of South Bohemia, Faculty of Science, Branišovská 1760, 370 05 České Budějovice, Czech Republic.
700    1_
$a Worden, Alexandra Z $u 1] Monterey Bay Aquarium Research Institute (MBARI), Moss Landing, CA 95039, USA [2] Integrated Microbial Biodiversity Program, Canadian Institute for Advanced Research, Toronto, M5G 1Z8, Canada.
700    1_
$a Eliáš, Marek $u University of Ostrava, Faculty of Science, Department of Biology and Ecology, Life Science Research Centre, Chittussiho 10, 710 00 Ostrava, Czech Republic.
773    0_
$w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 5, č. - (2015), s. 10134
856    41
$u https://pubmed.ncbi.nlm.nih.gov/26017773 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20160722 $b ABA008
991    __
$a 20160728115701 $b ABA008
999    __
$a ok $b bmc $g 1155411 $s 945269
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 5 $c - $d 10134 $e 20150528 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
LZP    __
$a Pubmed-20160722

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...