Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Radiation environment at aviation altitudes and in space

L. Sihver, O. Ploc, M. Puchalska, I. Ambrožová, J. Kubančák, D. Kyselová, V. Shurshakov,

. 2015 ; 164 (4) : 477-83. [pub] 20150515

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/bmc16020793

On the Earth, protection from cosmic radiation is provided by the magnetosphere and the atmosphere, but the radiation exposure increases with increasing altitude. Aircrew and especially space crew members are therefore exposed to an increased level of ionising radiation. Dosimetry onboard aircraft and spacecraft is however complicated by the presence of neutrons and high linear energy transfer particles. Film and thermoluminescent dosimeters, routinely used for ground-based personnel, do not reliably cover the range of particle types and energies found in cosmic radiation. Further, the radiation field onboard aircraft and spacecraft is not constant; its intensity and composition change mainly with altitude, geomagnetic position and solar activity (marginally also with the aircraft/spacecraft type, number of people aboard, amount of fuel etc.). The European Union Council directive 96/29/Euroatom of 1996 specifies that aircrews that could receive dose of >1 mSv y(-1) must be evaluated. The dose evaluation is routinely performed by computer programs, e.g. CARI-6, EPCARD, SIEVERT, PCAire, JISCARD and AVIDOS. Such calculations should however be carefully verified and validated. Measurements of the radiation field in aircraft are thus of a great importance. A promising option is the long-term deployment of active detectors, e.g. silicon spectrometer Liulin, TEPC Hawk and pixel detector Timepix. Outside the Earth's protective atmosphere and magnetosphere, the environment is much harsher than at aviation altitudes. In addition to the exposure to high energetic ionising cosmic radiation, there are microgravity, lack of atmosphere, psychological and psychosocial components etc. The milieu is therefore very unfriendly for any living organism. In case of solar flares, exposures of spacecraft crews may even be lethal. In this paper, long-term measurements of the radiation environment onboard Czech aircraft performed with the Liulin since 2001, as well as measurements and simulations of dose rates on and outside the International Space Station were presented. The measured and simulated results are discussed in the context of health impact.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16020793
003      
CZ-PrNML
005      
20160722121414.0
007      
ta
008      
160722s2015 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1093/rpd/ncv330 $2 doi
024    7_
$a 10.1093/rpd/ncv330 $2 doi
035    __
$a (PubMed)25979747
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Sihver, L $u Atominstitut, TU Wien, Stadionallee 2, Vienna 1020, Austria Chalmers University of Technology, Applied Physics, Göteborg, Sweden lembit.sihver@tuwien.ac.at.
245    10
$a Radiation environment at aviation altitudes and in space / $c L. Sihver, O. Ploc, M. Puchalska, I. Ambrožová, J. Kubančák, D. Kyselová, V. Shurshakov,
520    9_
$a On the Earth, protection from cosmic radiation is provided by the magnetosphere and the atmosphere, but the radiation exposure increases with increasing altitude. Aircrew and especially space crew members are therefore exposed to an increased level of ionising radiation. Dosimetry onboard aircraft and spacecraft is however complicated by the presence of neutrons and high linear energy transfer particles. Film and thermoluminescent dosimeters, routinely used for ground-based personnel, do not reliably cover the range of particle types and energies found in cosmic radiation. Further, the radiation field onboard aircraft and spacecraft is not constant; its intensity and composition change mainly with altitude, geomagnetic position and solar activity (marginally also with the aircraft/spacecraft type, number of people aboard, amount of fuel etc.). The European Union Council directive 96/29/Euroatom of 1996 specifies that aircrews that could receive dose of >1 mSv y(-1) must be evaluated. The dose evaluation is routinely performed by computer programs, e.g. CARI-6, EPCARD, SIEVERT, PCAire, JISCARD and AVIDOS. Such calculations should however be carefully verified and validated. Measurements of the radiation field in aircraft are thus of a great importance. A promising option is the long-term deployment of active detectors, e.g. silicon spectrometer Liulin, TEPC Hawk and pixel detector Timepix. Outside the Earth's protective atmosphere and magnetosphere, the environment is much harsher than at aviation altitudes. In addition to the exposure to high energetic ionising cosmic radiation, there are microgravity, lack of atmosphere, psychological and psychosocial components etc. The milieu is therefore very unfriendly for any living organism. In case of solar flares, exposures of spacecraft crews may even be lethal. In this paper, long-term measurements of the radiation environment onboard Czech aircraft performed with the Liulin since 2001, as well as measurements and simulations of dose rates on and outside the International Space Station were presented. The measured and simulated results are discussed in the context of health impact.
650    12
$a letecké a kosmické lékařství $7 D000337
650    _2
$a letadla $7 D000401
650    _2
$a atmosféra $7 D001272
650    12
$a kosmické záření $7 D003359
650    _2
$a lidé $7 D006801
650    _2
$a lineární přenos energie $7 D018499
650    _2
$a neutrony $7 D009502
650    12
$a pracovní expozice $7 D016273
650    _2
$a fantomy radiodiagnostické $7 D019047
650    12
$a dávka záření $7 D011829
650    12
$a radiační expozice $7 D000069079
650    _2
$a radiometrie $x přístrojové vybavení $x metody $7 D011874
650    _2
$a software $7 D012984
650    _2
$a sluneční aktivita $7 D019445
650    12
$a kosmický let $7 D013026
650    _2
$a kosmická loď $7 D018531
655    _2
$a časopisecké články $7 D016428
655    _2
$a přehledy $7 D016454
700    1_
$a Ploc, O $u Nuclear Physics Institute of the AS CR, Prague, Czech Republic.
700    1_
$a Puchalska, M $u Atominstitut, TU Wien, Stadionallee 2, Vienna 1020, Austria.
700    1_
$a Ambrožová, I $u Nuclear Physics Institute of the AS CR, Prague, Czech Republic. $7 gn_A_00005443
700    1_
$a Kubančák, J $u Nuclear Physics Institute of the AS CR, Prague, Czech Republic Czech Technical University in Prague, Institute of Experimental and Applied Physics, Horská 3a/22, Prague 128 00, Czech Republic.
700    1_
$a Kyselová, D $u Nuclear Physics Institute of the AS CR, Prague, Czech Republic Czech Technical University in Prague, Institute of Experimental and Applied Physics, Horská 3a/22, Prague 128 00, Czech Republic.
700    1_
$a Shurshakov, V $u Russian Academy of Sciences, State Research Center of Russian Federation Institute of Biomedical Problems, Russia.
773    0_
$w MED00004029 $t Radiation protection dosimetry $x 1742-3406 $g Roč. 164, č. 4 (2015), s. 477-83
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25979747 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20160722 $b ABA008
991    __
$a 20160722121628 $b ABA008
999    __
$a ok $b bmc $g 1155463 $s 945321
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 164 $c 4 $d 477-83 $e 20150515 $i 1742-3406 $m Radiation protection dosimetry $n Radiat Prot Dosimetry $x MED00004029
LZP    __
$a Pubmed-20160722

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...