-
Something wrong with this record ?
High-throughput concentration-response analysis for omics datasets
S. Smetanová, J. Riedl, D. Zitzkat, R. Altenburger, W. Busch,
Language English Country United States
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
25900799
DOI
10.1002/etc.3025
Knihovny.cz E-resources
- MeSH
- Zebrafish growth & development metabolism MeSH
- Ecosystem * MeSH
- Embryo, Nonmammalian drug effects metabolism MeSH
- Genomics * MeSH
- Environmental Pollutants toxicity MeSH
- Linear Models MeSH
- Metabolomics * MeSH
- High-Throughput Screening Assays MeSH
- Oligonucleotide Array Sequence Analysis MeSH
- Tetrachloroethylene toxicity MeSH
- Transcriptome drug effects MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Omics-based methods are increasingly used in current ecotoxicology. Therefore, a large number of observations for various toxic substances and organisms are available and may be used for identifying modes of action, adverse outcome pathways, or novel biomarkers. For these purposes, good statistical analysis of toxicogenomic data is vital. In contrast to established ecotoxicological techniques, concentration-response modeling is rarely used for large datasets. Instead, statistical hypothesis testing is prevalent, which provides only a limited scope for inference. The present study therefore applied automated concentration-response modeling for 3 different ecotoxicotranscriptomic and ecotoxicometabolomic datasets. The modeling process was performed by simultaneously applying 9 different regression models, representing distinct mechanistic, toxicological, and statistical ideas that result in different curve shapes. The best-fitting models were selected by using Akaike's information criterion. The linear and exponential models represented the best data description for more than 50% of responses. Models generating U-shaped curves were frequently selected for transcriptomic signals (30%), and sigmoid models were identified as best fit for many metabolomic signals (21%). Thus, selecting the models from an array of different types seems appropriate, because concentration-response functions may vary because of the observed response type, and they also depend on the compound, the organism, and the investigated concentration and exposure duration range. The application of concentration-response models can help to further tap the potential of omics data and is a necessary step for quantitative mixture effect assessment at the molecular response level.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16020859
- 003
- CZ-PrNML
- 005
- 20160726104308.0
- 007
- ta
- 008
- 160722s2015 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/etc.3025 $2 doi
- 024 7_
- $a 10.1002/etc.3025 $2 doi
- 035 __
- $a (PubMed)25900799
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Smetanová, Soňa $u Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Brno, Czech Republic. UFZ - Helmholtz Centre for Environmental Research, Department of Bioanalytical Ecotoxicology, Leipzig, Germany.
- 245 10
- $a High-throughput concentration-response analysis for omics datasets / $c S. Smetanová, J. Riedl, D. Zitzkat, R. Altenburger, W. Busch,
- 520 9_
- $a Omics-based methods are increasingly used in current ecotoxicology. Therefore, a large number of observations for various toxic substances and organisms are available and may be used for identifying modes of action, adverse outcome pathways, or novel biomarkers. For these purposes, good statistical analysis of toxicogenomic data is vital. In contrast to established ecotoxicological techniques, concentration-response modeling is rarely used for large datasets. Instead, statistical hypothesis testing is prevalent, which provides only a limited scope for inference. The present study therefore applied automated concentration-response modeling for 3 different ecotoxicotranscriptomic and ecotoxicometabolomic datasets. The modeling process was performed by simultaneously applying 9 different regression models, representing distinct mechanistic, toxicological, and statistical ideas that result in different curve shapes. The best-fitting models were selected by using Akaike's information criterion. The linear and exponential models represented the best data description for more than 50% of responses. Models generating U-shaped curves were frequently selected for transcriptomic signals (30%), and sigmoid models were identified as best fit for many metabolomic signals (21%). Thus, selecting the models from an array of different types seems appropriate, because concentration-response functions may vary because of the observed response type, and they also depend on the compound, the organism, and the investigated concentration and exposure duration range. The application of concentration-response models can help to further tap the potential of omics data and is a necessary step for quantitative mixture effect assessment at the molecular response level.
- 650 _2
- $a zvířata $7 D000818
- 650 12
- $a ekosystém $7 D017753
- 650 _2
- $a embryo nesavčí $x účinky léků $x metabolismus $7 D004625
- 650 _2
- $a látky znečišťující životní prostředí $x toxicita $7 D004785
- 650 12
- $a genomika $7 D023281
- 650 _2
- $a rychlé screeningové testy $7 D057166
- 650 _2
- $a lineární modely $7 D016014
- 650 12
- $a metabolomika $7 D055432
- 650 _2
- $a sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů $7 D020411
- 650 _2
- $a tetrachlorethylen $x toxicita $7 D013750
- 650 _2
- $a transkriptom $x účinky léků $7 D059467
- 650 _2
- $a dánio pruhované $x růst a vývoj $x metabolismus $7 D015027
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Riedl, Janet $u UFZ - Helmholtz Centre for Environmental Research, Department of Bioanalytical Ecotoxicology, Leipzig, Germany.
- 700 1_
- $a Zitzkat, Dimitar $u UFZ - Helmholtz Centre for Environmental Research, Department of Bioanalytical Ecotoxicology, Leipzig, Germany.
- 700 1_
- $a Altenburger, Rolf $u UFZ - Helmholtz Centre for Environmental Research, Department of Bioanalytical Ecotoxicology, Leipzig, Germany. $7 gn_A_00004913
- 700 1_
- $a Busch, Wibke $u UFZ - Helmholtz Centre for Environmental Research, Department of Bioanalytical Ecotoxicology, Leipzig, Germany.
- 773 0_
- $w MED00001560 $t Environmental toxicology and chemistry SETAC $x 1552-8618 $g Roč. 34, č. 9 (2015), s. 2167-80
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25900799 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20160722 $b ABA008
- 991 __
- $a 20160726104527 $b ABA008
- 999 __
- $a ok $b bmc $g 1155529 $s 945387
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 34 $c 9 $d 2167-80 $e 20150814 $i 1552-8618 $m Environmental toxicology and chemistry $n Environ Toxicol Chem $x MED00001560
- LZP __
- $a Pubmed-20160722