• Je něco špatně v tomto záznamu ?

High-throughput concentration-response analysis for omics datasets

S. Smetanová, J. Riedl, D. Zitzkat, R. Altenburger, W. Busch,

. 2015 ; 34 (9) : 2167-80. [pub] 20150814

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc16020859

Omics-based methods are increasingly used in current ecotoxicology. Therefore, a large number of observations for various toxic substances and organisms are available and may be used for identifying modes of action, adverse outcome pathways, or novel biomarkers. For these purposes, good statistical analysis of toxicogenomic data is vital. In contrast to established ecotoxicological techniques, concentration-response modeling is rarely used for large datasets. Instead, statistical hypothesis testing is prevalent, which provides only a limited scope for inference. The present study therefore applied automated concentration-response modeling for 3 different ecotoxicotranscriptomic and ecotoxicometabolomic datasets. The modeling process was performed by simultaneously applying 9 different regression models, representing distinct mechanistic, toxicological, and statistical ideas that result in different curve shapes. The best-fitting models were selected by using Akaike's information criterion. The linear and exponential models represented the best data description for more than 50% of responses. Models generating U-shaped curves were frequently selected for transcriptomic signals (30%), and sigmoid models were identified as best fit for many metabolomic signals (21%). Thus, selecting the models from an array of different types seems appropriate, because concentration-response functions may vary because of the observed response type, and they also depend on the compound, the organism, and the investigated concentration and exposure duration range. The application of concentration-response models can help to further tap the potential of omics data and is a necessary step for quantitative mixture effect assessment at the molecular response level.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16020859
003      
CZ-PrNML
005      
20160726104308.0
007      
ta
008      
160722s2015 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1002/etc.3025 $2 doi
024    7_
$a 10.1002/etc.3025 $2 doi
035    __
$a (PubMed)25900799
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Smetanová, Soňa $u Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Brno, Czech Republic. UFZ - Helmholtz Centre for Environmental Research, Department of Bioanalytical Ecotoxicology, Leipzig, Germany.
245    10
$a High-throughput concentration-response analysis for omics datasets / $c S. Smetanová, J. Riedl, D. Zitzkat, R. Altenburger, W. Busch,
520    9_
$a Omics-based methods are increasingly used in current ecotoxicology. Therefore, a large number of observations for various toxic substances and organisms are available and may be used for identifying modes of action, adverse outcome pathways, or novel biomarkers. For these purposes, good statistical analysis of toxicogenomic data is vital. In contrast to established ecotoxicological techniques, concentration-response modeling is rarely used for large datasets. Instead, statistical hypothesis testing is prevalent, which provides only a limited scope for inference. The present study therefore applied automated concentration-response modeling for 3 different ecotoxicotranscriptomic and ecotoxicometabolomic datasets. The modeling process was performed by simultaneously applying 9 different regression models, representing distinct mechanistic, toxicological, and statistical ideas that result in different curve shapes. The best-fitting models were selected by using Akaike's information criterion. The linear and exponential models represented the best data description for more than 50% of responses. Models generating U-shaped curves were frequently selected for transcriptomic signals (30%), and sigmoid models were identified as best fit for many metabolomic signals (21%). Thus, selecting the models from an array of different types seems appropriate, because concentration-response functions may vary because of the observed response type, and they also depend on the compound, the organism, and the investigated concentration and exposure duration range. The application of concentration-response models can help to further tap the potential of omics data and is a necessary step for quantitative mixture effect assessment at the molecular response level.
650    _2
$a zvířata $7 D000818
650    12
$a ekosystém $7 D017753
650    _2
$a embryo nesavčí $x účinky léků $x metabolismus $7 D004625
650    _2
$a látky znečišťující životní prostředí $x toxicita $7 D004785
650    12
$a genomika $7 D023281
650    _2
$a rychlé screeningové testy $7 D057166
650    _2
$a lineární modely $7 D016014
650    12
$a metabolomika $7 D055432
650    _2
$a sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů $7 D020411
650    _2
$a tetrachlorethylen $x toxicita $7 D013750
650    _2
$a transkriptom $x účinky léků $7 D059467
650    _2
$a dánio pruhované $x růst a vývoj $x metabolismus $7 D015027
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Riedl, Janet $u UFZ - Helmholtz Centre for Environmental Research, Department of Bioanalytical Ecotoxicology, Leipzig, Germany.
700    1_
$a Zitzkat, Dimitar $u UFZ - Helmholtz Centre for Environmental Research, Department of Bioanalytical Ecotoxicology, Leipzig, Germany.
700    1_
$a Altenburger, Rolf $u UFZ - Helmholtz Centre for Environmental Research, Department of Bioanalytical Ecotoxicology, Leipzig, Germany. $7 gn_A_00004913
700    1_
$a Busch, Wibke $u UFZ - Helmholtz Centre for Environmental Research, Department of Bioanalytical Ecotoxicology, Leipzig, Germany.
773    0_
$w MED00001560 $t Environmental toxicology and chemistry SETAC $x 1552-8618 $g Roč. 34, č. 9 (2015), s. 2167-80
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25900799 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20160722 $b ABA008
991    __
$a 20160726104527 $b ABA008
999    __
$a ok $b bmc $g 1155529 $s 945387
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 34 $c 9 $d 2167-80 $e 20150814 $i 1552-8618 $m Environmental toxicology and chemistry $n Environ Toxicol Chem $x MED00001560
LZP    __
$a Pubmed-20160722

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...