-
Je něco špatně v tomto záznamu ?
Effects of Metformin on Tissue Oxidative and Dicarbonyl Stress in Transgenic Spontaneously Hypertensive Rats Expressing Human C-Reactive Protein
H. Malínská, O. Oliyarnyk, V. Škop, J. Šilhavý, V. Landa, V. Zídek, P. Mlejnek, M. Šimáková, H. Strnad, L. Kazdová, M. Pravenec,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2006
Free Medical Journals
od 2006
Public Library of Science (PLoS)
od 2006
PubMed Central
od 2006
Europe PubMed Central
od 2006
ProQuest Central
od 2006-12-01
Open Access Digital Library
od 2006-10-01
Open Access Digital Library
od 2006-01-01
Open Access Digital Library
od 2006-01-01
Medline Complete (EBSCOhost)
od 2008-01-01
Nursing & Allied Health Database (ProQuest)
od 2006-12-01
Health & Medicine (ProQuest)
od 2006-12-01
Public Health Database (ProQuest)
od 2006-12-01
ROAD: Directory of Open Access Scholarly Resources
od 2006
- MeSH
- C-reaktivní protein biosyntéza genetika MeSH
- cytokiny metabolismus MeSH
- exprese genu MeSH
- glukosa metabolismus MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- lipolýza účinky léků genetika MeSH
- metformin farmakologie MeSH
- myokard metabolismus MeSH
- oxidační stres účinky léků genetika MeSH
- potkani inbrední SHR MeSH
- potkani transgenní MeSH
- proteinkinasy aktivované AMP genetika metabolismus MeSH
- pyruvaldehyd metabolismus MeSH
- srdeční komory metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Inflammation and oxidative and dicarbonyl stress play important roles in the pathogenesis of type 2 diabetes. Metformin is the first-line drug of choice for the treatment of type 2 diabetes because it effectively suppresses gluconeogenesis in the liver. However, its "pleiotropic" effects remain controversial. In the current study, we tested the effects of metformin on inflammation, oxidative and dicarbonyl stress in an animal model of inflammation and metabolic syndrome, using spontaneously hypertensive rats that transgenically express human C-reactive protein (SHR-CRP). We treated 8-month-old male transgenic SHR-CRP rats with metformin (5 mg/kg/day) mixed as part of a standard diet for 4 weeks. A corresponding untreated control group of male transgenic SHR-CRP rats were fed a standard diet without metformin. In a similar fashion, we studied a group of nontransgenic SHR treated with metformin and an untreated group of nontransgenic SHR controls. In each group, we studied 6 animals. Parameters of glucose and lipid metabolism and oxidative and dicarbonyl stress were measured using standard methods. Gene expression profiles were determined using Affymetrix GeneChip Arrays. Statistical significance was evaluated by two-way ANOVA. In the SHR-CRP transgenic strain, we found that metformin treatment decreased circulating levels of inflammatory response marker IL-6, TNFα and MCP-1 while levels of human CRP remained unchanged. Metformin significantly reduced oxidative stress (levels of conjugated dienes and TBARS) and dicarbonyl stress (levels of methylglyoxal) in left ventricles, but not in kidneys. No significant effects of metformin on oxidative and dicarbonyl stress were observed in SHR controls. In addition, metformin treatment reduced adipose tissue lipolysis associated with human CRP. Possible molecular mechanisms of metformin action-studied by gene expression profiling in the liver-revealed deregulated genes from inflammatory and insulin signaling, AMP-activated protein kinase (AMPK) signaling and gluconeogenesis pathways. It can be concluded that in the presence of high levels of human CRP, metformin protects against inflammation and oxidative and dicarbonyl stress in the heart, but not in the kidney. Accordingly, these cardioprotective effects of metformin might be especially effective in diabetic patients with high levels of CRP.
Institute of Molecular Genetics Czech Academy of Sciences Prague Czech Republic
Institute of Physiology Czech Academy of Sciences Prague Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16027598
- 003
- CZ-PrNML
- 005
- 20161005132208.0
- 007
- ta
- 008
- 161005s2016 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1371/journal.pone.0150924 $2 doi
- 024 7_
- $a 10.1371/journal.pone.0150924 $2 doi
- 035 __
- $a (PubMed)26963617
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Malínská, Hana $u Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
- 245 10
- $a Effects of Metformin on Tissue Oxidative and Dicarbonyl Stress in Transgenic Spontaneously Hypertensive Rats Expressing Human C-Reactive Protein / $c H. Malínská, O. Oliyarnyk, V. Škop, J. Šilhavý, V. Landa, V. Zídek, P. Mlejnek, M. Šimáková, H. Strnad, L. Kazdová, M. Pravenec,
- 520 9_
- $a Inflammation and oxidative and dicarbonyl stress play important roles in the pathogenesis of type 2 diabetes. Metformin is the first-line drug of choice for the treatment of type 2 diabetes because it effectively suppresses gluconeogenesis in the liver. However, its "pleiotropic" effects remain controversial. In the current study, we tested the effects of metformin on inflammation, oxidative and dicarbonyl stress in an animal model of inflammation and metabolic syndrome, using spontaneously hypertensive rats that transgenically express human C-reactive protein (SHR-CRP). We treated 8-month-old male transgenic SHR-CRP rats with metformin (5 mg/kg/day) mixed as part of a standard diet for 4 weeks. A corresponding untreated control group of male transgenic SHR-CRP rats were fed a standard diet without metformin. In a similar fashion, we studied a group of nontransgenic SHR treated with metformin and an untreated group of nontransgenic SHR controls. In each group, we studied 6 animals. Parameters of glucose and lipid metabolism and oxidative and dicarbonyl stress were measured using standard methods. Gene expression profiles were determined using Affymetrix GeneChip Arrays. Statistical significance was evaluated by two-way ANOVA. In the SHR-CRP transgenic strain, we found that metformin treatment decreased circulating levels of inflammatory response marker IL-6, TNFα and MCP-1 while levels of human CRP remained unchanged. Metformin significantly reduced oxidative stress (levels of conjugated dienes and TBARS) and dicarbonyl stress (levels of methylglyoxal) in left ventricles, but not in kidneys. No significant effects of metformin on oxidative and dicarbonyl stress were observed in SHR controls. In addition, metformin treatment reduced adipose tissue lipolysis associated with human CRP. Possible molecular mechanisms of metformin action-studied by gene expression profiling in the liver-revealed deregulated genes from inflammatory and insulin signaling, AMP-activated protein kinase (AMPK) signaling and gluconeogenesis pathways. It can be concluded that in the presence of high levels of human CRP, metformin protects against inflammation and oxidative and dicarbonyl stress in the heart, but not in the kidney. Accordingly, these cardioprotective effects of metformin might be especially effective in diabetic patients with high levels of CRP.
- 650 _2
- $a proteinkinasy aktivované AMP $x genetika $x metabolismus $7 D055372
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a C-reaktivní protein $x biosyntéza $x genetika $7 D002097
- 650 _2
- $a cytokiny $x metabolismus $7 D016207
- 650 _2
- $a exprese genu $7 D015870
- 650 _2
- $a glukosa $x metabolismus $7 D005947
- 650 _2
- $a srdeční komory $x metabolismus $7 D006352
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a lipolýza $x účinky léků $x genetika $7 D008066
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a metformin $x farmakologie $7 D008687
- 650 _2
- $a myokard $x metabolismus $7 D009206
- 650 _2
- $a oxidační stres $x účinky léků $x genetika $7 D018384
- 650 _2
- $a pyruvaldehyd $x metabolismus $7 D011765
- 650 _2
- $a krysa rodu Rattus $7 D051381
- 650 _2
- $a potkani inbrední SHR $7 D011918
- 650 _2
- $a potkani transgenní $7 D055647
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Oliyarnyk, Olena $u Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
- 700 1_
- $a Škop, Vojtěch $u Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
- 700 1_
- $a Šilhavý, Jan $u Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
- 700 1_
- $a Landa, Vladimír $u Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
- 700 1_
- $a Zídek, Václav $u Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
- 700 1_
- $a Mlejnek, Petr $u Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
- 700 1_
- $a Šimáková, Miroslava $u Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
- 700 1_
- $a Strnad, Hynek $u Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic.
- 700 1_
- $a Kazdová, Ludmila $u Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
- 700 1_
- $a Pravenec, Michal $u Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
- 773 0_
- $w MED00180950 $t PloS one $x 1932-6203 $g Roč. 11, č. 3 (2016), s. e0150924
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/26963617 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20161005 $b ABA008
- 991 __
- $a 20161005132555 $b ABA008
- 999 __
- $a ok $b bmc $g 1165912 $s 952228
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2016 $b 11 $c 3 $d e0150924 $e 20160310 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
- LZP __
- $a Pubmed-20161005