-
Je něco špatně v tomto záznamu ?
Data analysis of diagnostic accuracies in 12-lead electrocardiogram interpretation by junior medical fellows
T. Novotny, RR. Bond, I. Andrsova, L. Koc, M. Sisakova, DD. Finlay, D. Guldenring, J. Spinar, M. Malik,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- chybná diagnóza statistika a číselné údaje MeSH
- dospělí MeSH
- elektrokardiografie statistika a číselné údaje MeSH
- klinické kompetence statistika a číselné údaje MeSH
- lékaři statistika a číselné údaje MeSH
- lidé MeSH
- odchylka pozorovatele MeSH
- reprodukovatelnost výsledků MeSH
- senzitivita a specificita MeSH
- srdeční arytmie diagnóza MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
BACKGROUND: The electrocardiogram (ECG) is the most commonly used diagnostic procedure for assessing the cardiovascular system. The aim of this study was to compare ECG diagnostic skill among fellows of cardiology and of other internal medicine specialties (non-cardiology fellows). METHODS: A total of 2900 ECG interpretations were collected. A set of 100 clinical 12-lead ECG tracings were selected and classified into 12 diagnostic categories. The ECGs were evaluated by 15 cardiology fellows and of 14 non-cardiology fellows. Diagnostic interpretations were classified as (1) correct, (2) almost correct, (3) incorrect, and (4) dangerously incorrect. Multivariate logistic regression was used to assess confounding factors and to determine the odds ratios for the months of experience, age, sex, and the distinction between cardiology and non-cardiology fellows. RESULTS: The mean rate of correct diagnoses by cardiology vs. non-cardiology fellows was 48.9±8.9% vs. 35.9±8.0% (p=0.001; 70.1% vs. 55.0% for the aggregate of 'correct' and 'almost correct' diagnoses). There were 10.2±5.6% of interpretations classified as 'dangerously incorrect' by cardiology fellows vs. 16.3±5.0% by non-cardiology fellows (p=0.008). The cardiology fellows achieved statistically significantly greater diagnostic accuracy in 7 out of the 12 diagnostic classes. In multivariable logistic regression, the distinction between cardiology and non-cardiology fellows was the only independent statistically significant (p<0.001) predictor of whether the reader is likely correct or incorrect. Being a non-cardiology fellow reduced the probability of correct classification by 42% (odds ratio [95% confidence interval]: 0.58 [0.50; 0.68]). CONCLUSIONS: Although cardiology fellows out-performed the others, skills in ECG interpretation were found not adequately proficient. A comprehensive approach to ECG education is necessary. Further studies are needed to evaluate proper methods of training, testing, and continuous medical education in ECG interpretation.
Faculty of Computing and Engineering Ulster University United Kingdom
St Paul's Cardiac Electrophysiology University of London and Imperial College London United Kingdom
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16028203
- 003
- CZ-PrNML
- 005
- 20250610101113.0
- 007
- ta
- 008
- 161005s2015 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.jelectrocard.2015.08.023 $2 doi
- 024 7_
- $a 10.1016/j.jelectrocard.2015.08.023 $2 doi
- 035 __
- $a (PubMed)26381796
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Novotný, Tomáš, $d 1969- $u Department of Internal Medicine and Cardiology, University Hospital Brno and Faculty of Medicine of Masaryk University, Brno, Czech Republic. Electronic address: novotny-t@seznam.cz. $7 xx0055126
- 245 10
- $a Data analysis of diagnostic accuracies in 12-lead electrocardiogram interpretation by junior medical fellows / $c T. Novotny, RR. Bond, I. Andrsova, L. Koc, M. Sisakova, DD. Finlay, D. Guldenring, J. Spinar, M. Malik,
- 520 9_
- $a BACKGROUND: The electrocardiogram (ECG) is the most commonly used diagnostic procedure for assessing the cardiovascular system. The aim of this study was to compare ECG diagnostic skill among fellows of cardiology and of other internal medicine specialties (non-cardiology fellows). METHODS: A total of 2900 ECG interpretations were collected. A set of 100 clinical 12-lead ECG tracings were selected and classified into 12 diagnostic categories. The ECGs were evaluated by 15 cardiology fellows and of 14 non-cardiology fellows. Diagnostic interpretations were classified as (1) correct, (2) almost correct, (3) incorrect, and (4) dangerously incorrect. Multivariate logistic regression was used to assess confounding factors and to determine the odds ratios for the months of experience, age, sex, and the distinction between cardiology and non-cardiology fellows. RESULTS: The mean rate of correct diagnoses by cardiology vs. non-cardiology fellows was 48.9±8.9% vs. 35.9±8.0% (p=0.001; 70.1% vs. 55.0% for the aggregate of 'correct' and 'almost correct' diagnoses). There were 10.2±5.6% of interpretations classified as 'dangerously incorrect' by cardiology fellows vs. 16.3±5.0% by non-cardiology fellows (p=0.008). The cardiology fellows achieved statistically significantly greater diagnostic accuracy in 7 out of the 12 diagnostic classes. In multivariable logistic regression, the distinction between cardiology and non-cardiology fellows was the only independent statistically significant (p<0.001) predictor of whether the reader is likely correct or incorrect. Being a non-cardiology fellow reduced the probability of correct classification by 42% (odds ratio [95% confidence interval]: 0.58 [0.50; 0.68]). CONCLUSIONS: Although cardiology fellows out-performed the others, skills in ECG interpretation were found not adequately proficient. A comprehensive approach to ECG education is necessary. Further studies are needed to evaluate proper methods of training, testing, and continuous medical education in ECG interpretation.
- 650 _2
- $a dospělí $7 D000328
- 650 _2
- $a srdeční arytmie $x diagnóza $7 D001145
- 650 _2
- $a klinické kompetence $x statistika a číselné údaje $7 D002983
- 650 _2
- $a chybná diagnóza $x statistika a číselné údaje $7 D003951
- 650 _2
- $a elektrokardiografie $x statistika a číselné údaje $7 D004562
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a odchylka pozorovatele $7 D015588
- 650 _2
- $a lékaři $x statistika a číselné údaje $7 D010820
- 650 _2
- $a reprodukovatelnost výsledků $7 D015203
- 650 _2
- $a senzitivita a specificita $7 D012680
- 651 _2
- $a Evropa $7 D005060
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Bond, Raymond Robert $u Faculty of Computing and Engineering, Ulster University, United Kingdom.
- 700 1_
- $a Andrsova, Irena $u Department of Internal Medicine and Cardiology, University Hospital Brno and Faculty of Medicine of Masaryk University, Brno, Czech Republic. $7 gn_A_00006740
- 700 1_
- $a Koc, Lumir $u Department of Internal Medicine and Cardiology, University Hospital Brno and Faculty of Medicine of Masaryk University, Brno, Czech Republic.
- 700 1_
- $a Sisakova, Martina $u Department of Internal Medicine and Cardiology, University Hospital Brno and Faculty of Medicine of Masaryk University, Brno, Czech Republic.
- 700 1_
- $a Finlay, Dewar Darren $u Faculty of Computing and Engineering, Ulster University, United Kingdom.
- 700 1_
- $a Guldenring, Daniel $u Faculty of Computing and Engineering, Ulster University, United Kingdom.
- 700 1_
- $a Spinar, Jindrich $u Department of Internal Medicine and Cardiology, University Hospital Brno and Faculty of Medicine of Masaryk University, Brno, Czech Republic.
- 700 1_
- $a Malik, Marek $u St. Paul's Cardiac Electrophysiology, University of London, and Imperial College, London, United Kingdom.
- 773 0_
- $w MED00010003 $t Journal of electrocardiology $x 1532-8430 $g Roč. 48, č. 6 (2015), s. 988-94
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/26381796 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20161005 $b ABA008
- 991 __
- $a 20250610101106 $b ABA008
- 999 __
- $a ok $b bmc $g 1166517 $s 952833
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 48 $c 6 $d 988-94 $e 20150812 $i 1532-8430 $m Journal of electrocardiology $n J Electrocardiol $x MED00010003
- LZP __
- $a Pubmed-20161005