• Je něco špatně v tomto záznamu ?

Pattern Recognition Methods and Features Selection for Speech Emotion Recognition System

P. Partila, M. Voznak, J. Tovarek,

. 2015 ; 2015 (-) : 573068. [pub] 20150804

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc16028241

The impact of the classification method and features selection for the speech emotion recognition accuracy is discussed in this paper. Selecting the correct parameters in combination with the classifier is an important part of reducing the complexity of system computing. This step is necessary especially for systems that will be deployed in real-time applications. The reason for the development and improvement of speech emotion recognition systems is wide usability in nowadays automatic voice controlled systems. Berlin database of emotional recordings was used in this experiment. Classification accuracy of artificial neural networks, k-nearest neighbours, and Gaussian mixture model is measured considering the selection of prosodic, spectral, and voice quality features. The purpose was to find an optimal combination of methods and group of features for stress detection in human speech. The research contribution lies in the design of the speech emotion recognition system due to its accuracy and efficiency.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16028241
003      
CZ-PrNML
005      
20161031102040.0
007      
ta
008      
161005s2015 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1155/2015/573068 $2 doi
024    7_
$a 10.1155/2015/573068 $2 doi
035    __
$a (PubMed)26346654
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Partila, Pavol $u Department of Telecommunications, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17 Listopadu 15, 70833 Ostrava, Czech Republic.
245    10
$a Pattern Recognition Methods and Features Selection for Speech Emotion Recognition System / $c P. Partila, M. Voznak, J. Tovarek,
520    9_
$a The impact of the classification method and features selection for the speech emotion recognition accuracy is discussed in this paper. Selecting the correct parameters in combination with the classifier is an important part of reducing the complexity of system computing. This step is necessary especially for systems that will be deployed in real-time applications. The reason for the development and improvement of speech emotion recognition systems is wide usability in nowadays automatic voice controlled systems. Berlin database of emotional recordings was used in this experiment. Classification accuracy of artificial neural networks, k-nearest neighbours, and Gaussian mixture model is measured considering the selection of prosodic, spectral, and voice quality features. The purpose was to find an optimal combination of methods and group of features for stress detection in human speech. The research contribution lies in the design of the speech emotion recognition system due to its accuracy and efficiency.
650    12
$a algoritmy $7 D000465
650    _2
$a databáze faktografické $7 D016208
650    _2
$a emoce $x fyziologie $7 D004644
650    _2
$a lidé $7 D006801
650    _2
$a neuronové sítě $7 D016571
650    12
$a rozpoznávání automatizované $7 D010363
650    _2
$a rozpoznávání fyziologické $x fyziologie $7 D046709
650    _2
$a ROC křivka $7 D012372
650    _2
$a počítačové zpracování signálu $x přístrojové vybavení $7 D012815
650    _2
$a řeč $x fyziologie $7 D013060
650    _2
$a kvalita hlasu $7 D014833
655    _2
$a časopisecké články $7 D016428
700    1_
$a Voznak, Miroslav $u Department of Telecommunications, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17 Listopadu 15, 70833 Ostrava, Czech Republic.
700    1_
$a Tovarek, Jaromir $u Department of Telecommunications, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17 Listopadu 15, 70833 Ostrava, Czech Republic.
773    0_
$w MED00181094 $t TheScientificWorldJournal $x 1537-744X $g Roč. 2015, č. - (2015), s. 573068
856    41
$u https://pubmed.ncbi.nlm.nih.gov/26346654 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20161005 $b ABA008
991    __
$a 20161031102502 $b ABA008
999    __
$a ok $b bmc $g 1166555 $s 952871
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 2015 $c - $d 573068 $e 20150804 $i 1537-744X $m TheScientificWorldJournal $n ScientificWorldJournal $x MED00181094
LZP    __
$a Pubmed-20161005

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...