• Je něco špatně v tomto záznamu ?

An over-nonlocal implicit gradient-enhanced damage-plastic model for trabecular bone under large compressive strains

HS. Hosseini, M. Horák, PK. Zysset, M. Jirásek,

. 2015 ; 31 (11) : . [pub] 20150614

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc16028430

PURPOSE: Investigation of trabecular bone strength and compaction is important for fracture risk prediction. At 1-2% compressive strain, trabecular bone undergoes strain softening, which may lead to numerical instabilities and mesh dependency in classical local damage-plastic models. The aim of this work is to improve our continuum damage-plastic model of bone by reducing the influence of finite element mesh size under large compression. METHODOLOGY: This spurious numerical phenomenon may be circumvented by incorporating the nonlocal effect of cumulated plastic strain into the constitutive law. To this end, an over-nonlocal implicit gradient model of bone is developed and implemented into the finite element software ABAQUS using a user element subroutine. The ability of the model to detect the regions of bone failure is tested against experimental stepwise loading data of 16 human trabecular bone biopsies. FINDINGS: The numerical outcomes of the nonlocal model revealed reduction of finite element mesh dependency compared with the local damage-plastic model. Furthermore, it helped reduce the computational costs of large-strain compression simulations. ORIGINALITY: To the best of our knowledge, the proposed model is the first to predict the failure and densification of trabecular bone up to large compression independently of finite element mesh size. The current development enables the analysis of trabecular bone compaction as in osteoporotic fractures and implant migration, where large deformation of bone plays a key role.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16028430
003      
CZ-PrNML
005      
20161024104404.0
007      
ta
008      
161005s2015 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1002/cnm.2728 $2 doi
024    7_
$a 10.1002/cnm.2728 $2 doi
035    __
$a (PubMed)26033968
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Hosseini, Hadi S $u Faculty of Medicine, Institute for Surgical Technology and Biomechanics, University of Bern, Stauffacherstr. 78, Bern, CH-3014, Switzerland.
245    13
$a An over-nonlocal implicit gradient-enhanced damage-plastic model for trabecular bone under large compressive strains / $c HS. Hosseini, M. Horák, PK. Zysset, M. Jirásek,
520    9_
$a PURPOSE: Investigation of trabecular bone strength and compaction is important for fracture risk prediction. At 1-2% compressive strain, trabecular bone undergoes strain softening, which may lead to numerical instabilities and mesh dependency in classical local damage-plastic models. The aim of this work is to improve our continuum damage-plastic model of bone by reducing the influence of finite element mesh size under large compression. METHODOLOGY: This spurious numerical phenomenon may be circumvented by incorporating the nonlocal effect of cumulated plastic strain into the constitutive law. To this end, an over-nonlocal implicit gradient model of bone is developed and implemented into the finite element software ABAQUS using a user element subroutine. The ability of the model to detect the regions of bone failure is tested against experimental stepwise loading data of 16 human trabecular bone biopsies. FINDINGS: The numerical outcomes of the nonlocal model revealed reduction of finite element mesh dependency compared with the local damage-plastic model. Furthermore, it helped reduce the computational costs of large-strain compression simulations. ORIGINALITY: To the best of our knowledge, the proposed model is the first to predict the failure and densification of trabecular bone up to large compression independently of finite element mesh size. The current development enables the analysis of trabecular bone compaction as in osteoporotic fractures and implant migration, where large deformation of bone plays a key role.
650    _2
$a algoritmy $7 D000465
650    _2
$a biomechanika $x fyziologie $7 D001696
650    _2
$a kosti a kostní tkáň $x fyziologie $7 D001842
650    _2
$a pevnost v tlaku $x fyziologie $7 D019245
650    _2
$a fraktury kostí $7 D050723
650    _2
$a lidé $7 D006801
650    12
$a biologické modely $7 D008954
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Horák, Martin $u Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague, Zikova 1903/4, Praha 6, 166 36, Czech Republic.
700    1_
$a Zysset, Philippe K $u Faculty of Medicine, Institute for Surgical Technology and Biomechanics, University of Bern, Stauffacherstr. 78, Bern, CH-3014, Switzerland.
700    1_
$a Jirásek, Milan $u Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague, Zikova 1903/4, Praha 6, 166 36, Czech Republic.
773    0_
$w MED00184043 $t International journal for numerical methods in biomedical engineering $x 2040-7947 $g Roč. 31, č. 11 (2015)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/26033968 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20161005 $b ABA008
991    __
$a 20161024104816 $b ABA008
999    __
$a ok $b bmc $g 1166744 $s 953060
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 31 $c 11 $e 20150614 $i 2040-7947 $m International journal for numerical methods in biomedical engineering $n Int j numer method biomed eng $x MED00184043
LZP    __
$a Pubmed-20161005

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...