• Je něco špatně v tomto záznamu ?

Phase I metabolism of 3-methylindole, an environmental pollutant, by hepatic microsomes from carp (Cyprinus carpio) and rainbow trout (Oncorhynchus mykiss)

V. Zlabek, V. Burkina, F. Borrisser-Pairó, S. Sakalli, G. Zamaratskaia,

. 2016 ; 150 (-) : 304-10. [pub] 20160223

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc17000407

We studied the in vitro metabolism of 3-methylindole (3MI) in hepatic microsomes from fish. Hepatic microsomes from juvenile and adult carp (Cyprinus carpio) and rainbow trout (Oncorhynchus mykiss) were included in the study. Incubation of 3MI with hepatic microsomes revealed the time-dependent formation of two major metabolites, 3-methyloxindole (3MOI) and indole-3-carbinol (I3C). The rate of 3MOI production was similar in both species at both ages. No differences in kinetic parameters were observed (p = 0.799 for Vmax, and p = 0.809 for Km). Production of I3C was detected only in the microsomes from rainbow trout. Km values were similar in juvenile and adult fish (p = 0.957); Vmax was higher in juvenile rainbow trout compared with adults (p = 0.044). In rainbow trout and carp, ellipticine reduced formation of 3MOI up to 53.2% and 81.9% and ketoconazole up to 65.8% and 91.3%, respectively. The formation of I3C was reduced by 53.7% and 51.5% in the presence of the inhibitors ellipticine and ketoconazole, respectively. These findings suggest that the CYP450 isoforms CYP1A and CYP3A are at least partly responsible for 3MI metabolism. In summary, 3MI is metabolised in fish liver to 3MOI and I3C by CYP450, and formation of these metabolites might be species-dependent.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc17000407
003      
CZ-PrNML
005      
20170117095213.0
007      
ta
008      
170103s2016 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.chemosphere.2016.02.037 $2 doi
024    7_
$a 10.1016/j.chemosphere.2016.02.037 $2 doi
035    __
$a (PubMed)26915592
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Zlabek, Vladimir $u University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic. Electronic address: vzlabek@frov.jcu.cz.
245    10
$a Phase I metabolism of 3-methylindole, an environmental pollutant, by hepatic microsomes from carp (Cyprinus carpio) and rainbow trout (Oncorhynchus mykiss) / $c V. Zlabek, V. Burkina, F. Borrisser-Pairó, S. Sakalli, G. Zamaratskaia,
520    9_
$a We studied the in vitro metabolism of 3-methylindole (3MI) in hepatic microsomes from fish. Hepatic microsomes from juvenile and adult carp (Cyprinus carpio) and rainbow trout (Oncorhynchus mykiss) were included in the study. Incubation of 3MI with hepatic microsomes revealed the time-dependent formation of two major metabolites, 3-methyloxindole (3MOI) and indole-3-carbinol (I3C). The rate of 3MOI production was similar in both species at both ages. No differences in kinetic parameters were observed (p = 0.799 for Vmax, and p = 0.809 for Km). Production of I3C was detected only in the microsomes from rainbow trout. Km values were similar in juvenile and adult fish (p = 0.957); Vmax was higher in juvenile rainbow trout compared with adults (p = 0.044). In rainbow trout and carp, ellipticine reduced formation of 3MOI up to 53.2% and 81.9% and ketoconazole up to 65.8% and 91.3%, respectively. The formation of I3C was reduced by 53.7% and 51.5% in the presence of the inhibitors ellipticine and ketoconazole, respectively. These findings suggest that the CYP450 isoforms CYP1A and CYP3A are at least partly responsible for 3MI metabolism. In summary, 3MI is metabolised in fish liver to 3MOI and I3C by CYP450, and formation of these metabolites might be species-dependent.
650    _2
$a zvířata $7 D000818
650    _2
$a kapři $x metabolismus $7 D002347
650    _2
$a inhibitory cytochromu P450 $x farmakologie $7 D065607
650    _2
$a systém (enzymů) cytochromů P-450 $x metabolismus $7 D003577
650    _2
$a elipticiny $x farmakologie $7 D004611
650    _2
$a techniky in vitro $7 D066298
650    _2
$a indoly $x metabolismus $7 D007211
650    _2
$a ketokonazol $x farmakologie $7 D007654
650    _2
$a játra $x účinky léků $x metabolismus $7 D008099
650    _2
$a I. fáze biotransformace $7 D050216
650    _2
$a jaterní mikrozomy $x účinky léků $x metabolismus $7 D008862
650    _2
$a Oncorhynchus mykiss $x metabolismus $7 D017686
650    _2
$a skatol $x metabolismus $x toxicita $7 D012862
650    _2
$a druhová specificita $7 D013045
650    _2
$a chemické látky znečišťující vodu $x metabolismus $x toxicita $7 D014874
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Burkina, Viktoriia $u University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic. Electronic address: vburkina@frov.jcu.cz.
700    1_
$a Borrisser-Pairó, Francesc $u Product Quality Program, IRTA-Monells, Girona, Spain. Electronic address: francesc.borrisser@irta.cat.
700    1_
$a Sakalli, Sidika $u University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic. Electronic address: sakalli@frov.jcu.cz.
700    1_
$a Zamaratskaia, Galia $u University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic; Swedish University of Agricultural Sciences, Uppsala, Sweden. Electronic address: Galia.Zamaratskaia@slu.se.
773    0_
$w MED00002124 $t Chemosphere $x 1879-1298 $g Roč. 150, č. - (2016), s. 304-10
856    41
$u https://pubmed.ncbi.nlm.nih.gov/26915592 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20170103 $b ABA008
991    __
$a 20170117095319 $b ABA008
999    __
$a ok $b bmc $g 1179547 $s 960974
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 150 $c - $d 304-10 $e 20160223 $i 1879-1298 $m Chemosphere $n Chemosphere $x MED00002124
LZP    __
$a Pubmed-20170103

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...