Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Arabidopsis FH1 Formin Affects Cotyledon Pavement Cell Shape by Modulating Cytoskeleton Dynamics

A. Rosero, D. Oulehlová, L. Stillerová, P. Schiebertová, M. Grunt, V. Žárský, F. Cvrčková,

. 2016 ; 57 (3) : 488-504. [pub] 20160106

Language English Country Japan

Document type Journal Article, Research Support, Non-U.S. Gov't

Plant cell morphogenesis involves concerted rearrangements of microtubules and actin microfilaments. We previously reported that FH1, the main Arabidopsis thaliana housekeeping Class I membrane-anchored formin, contributes to actin dynamics and microtubule stability in rhizodermis cells. Here we examine the effects of mutations affecting FH1 (At3g25500) on cell morphogenesis and above-ground organ development in seedlings, as well as on cytoskeletal organization and dynamics, using a combination of confocal and variable angle epifluorescence microscopy with a pharmacological approach. Homozygous fh1 mutants exhibited cotyledon epinasty and had larger cotyledon pavement cells with more pronounced lobes than the wild type. The pavement cell shape alterations were enhanced by expression of the fluorescent microtubule marker GFP-microtubule-associated protein 4 (MAP4). Mutant cotyledon pavement cells exhibited reduced density and increased stability of microfilament bundles, as well as enhanced dynamics of microtubules. Analogous results were also obtained upon treatments with the formin inhibitor SMIFH2 (small molecule inhibitor of formin homology 2 domains). Pavement cell shape in wild-type (wt) and fh1 plants in some situations exhibited a differential response towards anti-cytoskeletal drugs, especially the microtubule disruptor oryzalin. Our observations indicate that FH1 participates in the control of microtubule dynamics, possibly via its effects on actin, subsequently influencing cell morphogenesis and macroscopic organ development.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc17000684
003      
CZ-PrNML
005      
20170112110524.0
007      
ta
008      
170103s2016 ja f 000 0|eng||
009      
AR
024    7_
$a 10.1093/pcp/pcv209 $2 doi
024    7_
$a 10.1093/pcp/pcv209 $2 doi
035    __
$a (PubMed)26738547
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ja
100    1_
$a Rosero, Amparo $u Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Viničná 5, CZ 128 44 Praha 2, Czech Republic Colombian Institute for Agricultural Research-CORPOICA-Turipana, Km 13 via Monteria, Cereté, Cordoba, Colombia Department of Cell Biology, Faculty of Science, Palacký University Olomouc, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 586/11, CZ 783 71 Olomouc-Holice, Czech Republic.
245    10
$a Arabidopsis FH1 Formin Affects Cotyledon Pavement Cell Shape by Modulating Cytoskeleton Dynamics / $c A. Rosero, D. Oulehlová, L. Stillerová, P. Schiebertová, M. Grunt, V. Žárský, F. Cvrčková,
520    9_
$a Plant cell morphogenesis involves concerted rearrangements of microtubules and actin microfilaments. We previously reported that FH1, the main Arabidopsis thaliana housekeeping Class I membrane-anchored formin, contributes to actin dynamics and microtubule stability in rhizodermis cells. Here we examine the effects of mutations affecting FH1 (At3g25500) on cell morphogenesis and above-ground organ development in seedlings, as well as on cytoskeletal organization and dynamics, using a combination of confocal and variable angle epifluorescence microscopy with a pharmacological approach. Homozygous fh1 mutants exhibited cotyledon epinasty and had larger cotyledon pavement cells with more pronounced lobes than the wild type. The pavement cell shape alterations were enhanced by expression of the fluorescent microtubule marker GFP-microtubule-associated protein 4 (MAP4). Mutant cotyledon pavement cells exhibited reduced density and increased stability of microfilament bundles, as well as enhanced dynamics of microtubules. Analogous results were also obtained upon treatments with the formin inhibitor SMIFH2 (small molecule inhibitor of formin homology 2 domains). Pavement cell shape in wild-type (wt) and fh1 plants in some situations exhibited a differential response towards anti-cytoskeletal drugs, especially the microtubule disruptor oryzalin. Our observations indicate that FH1 participates in the control of microtubule dynamics, possibly via its effects on actin, subsequently influencing cell morphogenesis and macroscopic organ development.
650    _2
$a mikrofilamenta $x účinky léků $x metabolismus $7 D008841
650    _2
$a aktiny $x metabolismus $7 D000199
650    _2
$a Arabidopsis $x cytologie $x účinky léků $x metabolismus $7 D017360
650    _2
$a proteiny huseníčku $x metabolismus $7 D029681
650    _2
$a biologické markery $x metabolismus $7 D015415
650    12
$a tvar buňky $x účinky léků $7 D048430
650    _2
$a klathrin $x metabolismus $7 D002966
650    _2
$a kotyledon $x účinky léků $x metabolismus $7 D018548
650    _2
$a cytoskelet $x účinky léků $x metabolismus $7 D003599
650    _2
$a fluorescence $7 D005453
650    _2
$a zelené fluorescenční proteiny $x metabolismus $7 D049452
650    _2
$a membránové proteiny $x metabolismus $7 D008565
650    _2
$a mikrotubuly $x účinky léků $x metabolismus $7 D008870
650    _2
$a biologické modely $7 D008954
650    _2
$a mutace $x genetika $7 D009154
650    _2
$a semenáček $x účinky léků $x růst a vývoj $x metabolismus $7 D036226
650    _2
$a thioketony $x farmakologie $7 D013871
650    _2
$a uracil $x analogy a deriváty $x farmakologie $7 D014498
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Oulehlová, Denisa $u Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Viničná 5, CZ 128 44 Praha 2, Czech Republic Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 135, CZ 160 00 Prague 6, Czech Republic.
700    1_
$a Stillerová, Lenka $u Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Viničná 5, CZ 128 44 Praha 2, Czech Republic.
700    1_
$a Schiebertová, Petra $u Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Viničná 5, CZ 128 44 Praha 2, Czech Republic.
700    1_
$a Grunt, Michal $u Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Viničná 5, CZ 128 44 Praha 2, Czech Republic.
700    1_
$a Žárský, Viktor $u Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Viničná 5, CZ 128 44 Praha 2, Czech Republic Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 135, CZ 160 00 Prague 6, Czech Republic.
700    1_
$a Cvrčková, Fatima $u Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Viničná 5, CZ 128 44 Praha 2, Czech Republic fatima@natur.cuni.cz.
773    0_
$w MED00003836 $t Plant & cell physiology $x 1471-9053 $g Roč. 57, č. 3 (2016), s. 488-504
856    41
$u https://pubmed.ncbi.nlm.nih.gov/26738547 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20170103 $b ABA008
991    __
$a 20170112110623 $b ABA008
999    __
$a ok $b bmc $g 1179824 $s 961251
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 57 $c 3 $d 488-504 $e 20160106 $i 1471-9053 $m Plant and Cell Physiology $n Plant Cell Physiol $x MED00003836
LZP    __
$a Pubmed-20170103

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...