-
Something wrong with this record ?
Parametric vs. nonparametric Regression modelling within clinical decision support
Jan Kalina, Jana Zvárová
Language English Country Czech Republic
Digital library NLK
Issue
Volume
Source
NLK
ROAD: Directory of Open Access Scholarly Resources
from 2013
- MeSH
- Data Interpretation, Statistical MeSH
- Clinical Decision-Making methods MeSH
- Linear Models MeSH
- Logistic Models MeSH
- Least-Squares Analysis MeSH
- Neural Networks, Computer MeSH
- Regression Analysis * MeSH
- Models, Statistical * MeSH
- Statistics as Topic MeSH
- Support Vector Machine MeSH
- Decision Support Systems, Clinical MeSH
Decision support systems represent very complicated systems offering assistance with the decision making process. Learning the classification rule of a decision support system requires to solve complex statistical task, most commonly by means of classification analysis. However, the regression methodology may be useful in this context as well. This paper has the aim to overview various regression methods, discuss their properties and show examples within clinical decision making.
Literatura
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17007338
- 003
- CZ-PrNML
- 005
- 20170522111905.0
- 007
- cr|cn|
- 008
- 170221s2017 xr fs 000 0|eng||
- 009
- AR
- 040 __
- $a ABA008 $d ABA008 $e AACR2 $b cze
- 041 0_
- $a eng
- 044 __
- $a xr
- 100 1_
- $a Kalina, Jan, $d 1977- $7 xx0207698 $u Institute of Computer Science CAS, Prague, Czech Republic
- 245 10
- $a Parametric vs. nonparametric Regression modelling within clinical decision support / $c Jan Kalina, Jana Zvárová
- 504 __
- $a Literatura
- 520 3_
- $a Decision support systems represent very complicated systems offering assistance with the decision making process. Learning the classification rule of a decision support system requires to solve complex statistical task, most commonly by means of classification analysis. However, the regression methodology may be useful in this context as well. This paper has the aim to overview various regression methods, discuss their properties and show examples within clinical decision making.
- 650 _2
- $a systémy pro podporu klinického rozhodování $7 D020000
- 650 _2
- $a klinické rozhodování $x metody $7 D000066491
- 650 _2
- $a statistika jako téma $7 D013223
- 650 _2
- $a interpretace statistických dat $7 D003627
- 650 12
- $a regresní analýza $7 D012044
- 650 12
- $a statistické modely $7 D015233
- 650 _2
- $a lineární modely $7 D016014
- 650 _2
- $a logistické modely $7 D016015
- 650 _2
- $a metoda nejmenších čtverců $7 D016018
- 650 _2
- $a neuronové sítě $7 D016571
- 650 _2
- $a support vector machine $7 D060388
- 700 1_
- $a Zvárová, Jana, $d 1943-2017 $7 nlk19990074087 $u Institute of Computer Science CAS, Prague, Czech Republic; First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
- 773 0_
- $t International journal on biomedicine and healthcare $x 1805-8698 $g Roč. 5, č. 1 (2017), s. 21-27 $w MED00188409
- 856 41
- $u http://ijbh.org/ijbh2017-1.pdf $y plný text volně přístupný
- 910 __
- $a ABA008 $b online $y 4 $z 0
- 990 __
- $a 20170221080106 $b ABA008
- 991 __
- $a 20170522112300 $b ABA008
- 999 __
- $a ok $b bmc $g 1189742 $s 968009
- BAS __
- $a 3 $a 4
- BMC __
- $a 2017 $b 5 $c 1 $d 21-27 $i 1805-8698 $m International journal on biomedicine and healthcare $x MED00188409
- LZP __
- $c NLK120 $d 20170522 $a NLK 2017-08/pk