-
Je něco špatně v tomto záznamu ?
Effect of Simvastatin, Coenzyme Q10, Resveratrol, Acetylcysteine and Acetylcarnitine on mitochondrial respiration
Z. Fišar, J. Hroudová, N. Singh, A. Kopřivová, D. Macečková
Jazyk angličtina Země Česko
Typ dokumentu časopisecké články
Grantová podpora
NV15-28967A
MZ0
CEP - Centrální evidence projektů
Digitální knihovna NLK
Plný text - Článek
Zdroj
NLK
Free Medical Journals
od 2000
Freely Accessible Science Journals
od 2000
ProQuest Central
od 2005-01-01
Health & Medicine (ProQuest)
od 2005-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2000
- MeSH
- acetylcystein farmakologie MeSH
- acylkarnitin farmakologie MeSH
- buněčné dýchání účinky léků MeSH
- mitochondrie účinky léků metabolismus MeSH
- mozek účinky léků MeSH
- neuroprotektivní látky farmakologie MeSH
- prasata MeSH
- respirační komplex IV metabolismus MeSH
- simvastatin farmakologie MeSH
- spotřeba kyslíku účinky léků MeSH
- stilbeny farmakologie MeSH
- ubichinon analogy a deriváty farmakologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Some therapeutic and/or adverse effects of drugs may be related to their effects on mitochondrial function. The effects of simvastatin, resveratrol, coenzyme Q10, acetylcysteine, and acetylcarnitine on Complex I-, Complex II-, or Complex IV-linked respiratory rate were determined in isolated brain mitochondria. The protective effects of these biologically active compounds on the calcium-induced decrease of the respiratory rate were also studied. We observed a significant inhibitory effect of simvastatin on mitochondrial respiration (IC50 = 24.0 μM for Complex I-linked respiration, IC50 = 31.3 μM for Complex II-linked respiration, and IC50 = 42.9 μM for Complex IV-linked respiration); the inhibitory effect of resveratrol was found at very high concentrations (IC50 = 162 μM for Complex I-linked respiration, IC50 = 564 μM for Complex II-linked respiration, and IC50 = 1454 μM for Complex IV-linked respiration). Concentrations required for effective simvastatin- or resveratrol-induced inhibition of mitochondrial respiration were found much higher than concentrations achieved under standard dosing of these drugs. Acetylcysteine and acetylcarnitine did not affect the oxygen consumption rate of mitochondria. Coenzyme Q10 induced an increase of Complex I-linked respiration. The increase of free calcium ions induced partial inhibition of the Complex I+II-linked mitochondrial respiration, and all tested drugs counteracted this inhibition. None of the tested drugs showed mitochondrial toxicity (characterized by respiratory rate inhibition) at drug concentrations achieved at therapeutic drug intake. Resveratrol, simvastatin, and acetylcarnitine had the greatest neuroprotective potential (characterized by protective effects against calcium-induced reduction of the respiratory rate).
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17010394
- 003
- CZ-PrNML
- 005
- 20201029153749.0
- 007
- ta
- 008
- 170320s2016 xr d f 000 0|eng||
- 009
- AR
- 035 __
- $a (PubMed)27187037
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xr
- 100 1_
- $a Fišar, Zdeněk, $u Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic $d 1956- $7 jn20000400692
- 245 10
- $a Effect of Simvastatin, Coenzyme Q10, Resveratrol, Acetylcysteine and Acetylcarnitine on mitochondrial respiration / $c Z. Fišar, J. Hroudová, N. Singh, A. Kopřivová, D. Macečková
- 520 9_
- $a Some therapeutic and/or adverse effects of drugs may be related to their effects on mitochondrial function. The effects of simvastatin, resveratrol, coenzyme Q10, acetylcysteine, and acetylcarnitine on Complex I-, Complex II-, or Complex IV-linked respiratory rate were determined in isolated brain mitochondria. The protective effects of these biologically active compounds on the calcium-induced decrease of the respiratory rate were also studied. We observed a significant inhibitory effect of simvastatin on mitochondrial respiration (IC50 = 24.0 μM for Complex I-linked respiration, IC50 = 31.3 μM for Complex II-linked respiration, and IC50 = 42.9 μM for Complex IV-linked respiration); the inhibitory effect of resveratrol was found at very high concentrations (IC50 = 162 μM for Complex I-linked respiration, IC50 = 564 μM for Complex II-linked respiration, and IC50 = 1454 μM for Complex IV-linked respiration). Concentrations required for effective simvastatin- or resveratrol-induced inhibition of mitochondrial respiration were found much higher than concentrations achieved under standard dosing of these drugs. Acetylcysteine and acetylcarnitine did not affect the oxygen consumption rate of mitochondria. Coenzyme Q10 induced an increase of Complex I-linked respiration. The increase of free calcium ions induced partial inhibition of the Complex I+II-linked mitochondrial respiration, and all tested drugs counteracted this inhibition. None of the tested drugs showed mitochondrial toxicity (characterized by respiratory rate inhibition) at drug concentrations achieved at therapeutic drug intake. Resveratrol, simvastatin, and acetylcarnitine had the greatest neuroprotective potential (characterized by protective effects against calcium-induced reduction of the respiratory rate).
- 650 _2
- $a acylkarnitin $x farmakologie $7 D000108
- 650 _2
- $a acetylcystein $x farmakologie $7 D000111
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a mozek $x účinky léků $7 D001921
- 650 _2
- $a buněčné dýchání $x účinky léků $7 D019069
- 650 _2
- $a respirační komplex IV $x metabolismus $7 D003576
- 650 _2
- $a mitochondrie $x účinky léků $x metabolismus $7 D008928
- 650 _2
- $a neuroprotektivní látky $x farmakologie $7 D018696
- 650 _2
- $a spotřeba kyslíku $x účinky léků $7 D010101
- 650 _2
- $a simvastatin $x farmakologie $7 D019821
- 650 _2
- $a stilbeny $x farmakologie $7 D013267
- 650 _2
- $a prasata $7 D013552
- 650 _2
- $a ubichinon $x analogy a deriváty $x farmakologie $7 D014451
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Rečková Hroudová, Jana, $u Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic $d 1984- $7 xx0184209
- 700 1_
- $a Singh, Namrata $u Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic $7 _AN084846
- 700 1_
- $a Kopřivová, A. $u Department of Biology, Faculty of Science, University J. E. Purkyně in Ústí nad Labem, Czech Republic $7 _AN090889
- 700 1_
- $a Macečková, D. $u Department of Biology, Faculty of Science, University J. E. Purkyně in Ústí nad Labem, Czech Republic $7 _AN090890
- 773 0_
- $w MED00011004 $t Folia biologica $x 0015-5500 $g Roč. 62, č. 2 (2016), s. 53-66
- 856 41
- $u http://fb.cuni.cz/ $y domovská stránka časopisu
- 910 __
- $a ABA008 $b A 970 $c 89 $y 4 $z 0
- 990 __
- $a 20170320 $b ABA008
- 991 __
- $a 20201029153746 $b ABA008
- 999 __
- $a ok $b bmc $g 1196578 $s 971110
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2016 $b 62 $c 2 $d 53-66 $i 0015-5500 $m Folia biologica (Praha) $n Folia biol. (Praha) $x MED00011004
- GRA __
- $a NV15-28967A $p MZ0
- LZP __
- $b NLK118 $a Pubmed-20170320