• Je něco špatně v tomto záznamu ?

A quantitative symmetry-based analysis of hyperacute ischemic stroke lesions in noncontrast computed tomography

R. Peter, P. Korfiatis, D. Blezek, A. Oscar Beitia, I. Stepan-Buksakowska, D. Horinek, KD. Flemming, BJ. Erickson,

. 2017 ; 44 (1) : 192-199. [pub] 20170108

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc17013310

PURPOSE: Early identification of ischemic stroke plays a significant role in treatment and potential recovery of damaged brain tissue. In noncontrast CT (ncCT), the differences between ischemic changes and healthy tissue are usually very subtle during the hyperacute phase (< 8 h from the stroke onset). Therefore, visual comparison of both hemispheres is an important step in clinical assessment. A quantitative symmetry-based analysis of texture features of ischemic lesions in noncontrast CT images may provide an important information for differentiation of ischemic and healthy brain tissue in this phase. METHODS: One hundred thirty-nine (139) ncCT scans of hyperacute ischemic stroke with follow-up magnetic resonance diffusion-weighted (MR-DW) images were collected. The regions of stroke were identified in the MR-DW images, which were spatially aligned to corresponding ncCT images. A state-of-the-art symmetric diffeomorphic image registration was utilized for the alignment of CT and MR-DW, for identification of individual brain hemispheres, and for localization of the region representing healthy tissue contralateral to the stroke cores. Texture analysis included extraction and classification of co-occurrence and run-length texture-based image features in the regions of ischemic stroke and their contralateral regions. RESULTS: The classification schemes achieved area under the receiver operating characteristic [Az] ≈ 0.82 for the whole dataset. There was no statistically significant difference in the performance of classifiers for the data sets with time between 2 and 8 hours from symptom onset. The performance of the classifiers did not depend on the size of the stroke regions. CONCLUSIONS: The results provide a set of optimal texture features which are suitable for distinguishing between hyperacute ischemic lesions and their corresponding contralateral brain tissue in noncontrast CT. This work is an initial step toward development of an automated decision support system for detection of hyperacute ischemic stroke lesions on noncontrast CT of the brain.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc17013310
003      
CZ-PrNML
005      
20170418103327.0
007      
ta
008      
170413s2017 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1002/mp.12015 $2 doi
035    __
$a (PubMed)28066898
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Peter, Roman $u Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA. International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 65691 Brno, Czech Republic.
245    12
$a A quantitative symmetry-based analysis of hyperacute ischemic stroke lesions in noncontrast computed tomography / $c R. Peter, P. Korfiatis, D. Blezek, A. Oscar Beitia, I. Stepan-Buksakowska, D. Horinek, KD. Flemming, BJ. Erickson,
520    9_
$a PURPOSE: Early identification of ischemic stroke plays a significant role in treatment and potential recovery of damaged brain tissue. In noncontrast CT (ncCT), the differences between ischemic changes and healthy tissue are usually very subtle during the hyperacute phase (< 8 h from the stroke onset). Therefore, visual comparison of both hemispheres is an important step in clinical assessment. A quantitative symmetry-based analysis of texture features of ischemic lesions in noncontrast CT images may provide an important information for differentiation of ischemic and healthy brain tissue in this phase. METHODS: One hundred thirty-nine (139) ncCT scans of hyperacute ischemic stroke with follow-up magnetic resonance diffusion-weighted (MR-DW) images were collected. The regions of stroke were identified in the MR-DW images, which were spatially aligned to corresponding ncCT images. A state-of-the-art symmetric diffeomorphic image registration was utilized for the alignment of CT and MR-DW, for identification of individual brain hemispheres, and for localization of the region representing healthy tissue contralateral to the stroke cores. Texture analysis included extraction and classification of co-occurrence and run-length texture-based image features in the regions of ischemic stroke and their contralateral regions. RESULTS: The classification schemes achieved area under the receiver operating characteristic [Az] ≈ 0.82 for the whole dataset. There was no statistically significant difference in the performance of classifiers for the data sets with time between 2 and 8 hours from symptom onset. The performance of the classifiers did not depend on the size of the stroke regions. CONCLUSIONS: The results provide a set of optimal texture features which are suitable for distinguishing between hyperacute ischemic lesions and their corresponding contralateral brain tissue in noncontrast CT. This work is an initial step toward development of an automated decision support system for detection of hyperacute ischemic stroke lesions on noncontrast CT of the brain.
650    _2
$a senioři $7 D000368
650    _2
$a senioři nad 80 let $7 D000369
650    _2
$a ischemie mozku $x komplikace $7 D002545
650    _2
$a rozhodovací stromy $7 D003663
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a lidé $7 D006801
650    _2
$a počítačové zpracování obrazu $x metody $7 D007091
650    _2
$a magnetická rezonanční tomografie $7 D008279
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a senzitivita a specificita $7 D012680
650    _2
$a cévní mozková příhoda $x komplikace $x diagnostické zobrazování $7 D020521
650    _2
$a support vector machine $7 D060388
650    12
$a počítačová rentgenová tomografie $7 D014057
655    _2
$a časopisecké články $7 D016428
700    1_
$a Korfiatis, Panagiotis $u Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
700    1_
$a Blezek, Daniel $u Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
700    1_
$a Oscar Beitia, A $u Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
700    1_
$a Stepan-Buksakowska, Irena $u International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 65691 Brno, Czech Republic.
700    1_
$a Horinek, Daniel $u International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 65691 Brno, Czech Republic.
700    1_
$a Flemming, Kelly D $u Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
700    1_
$a Erickson, Bradley J $u Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
773    0_
$w MED00003245 $t Medical physics $x 2473-4209 $g Roč. 44, č. 1 (2017), s. 192-199
856    41
$u https://pubmed.ncbi.nlm.nih.gov/28066898 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20170413 $b ABA008
991    __
$a 20170418103635 $b ABA008
999    __
$a ok $b bmc $g 1199775 $s 974088
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2017 $b 44 $c 1 $d 192-199 $e 20170108 $i 2473-4209 $m Medical physics $n Med Phys $x MED00003245
LZP    __
$a Pubmed-20170413

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...