-
Je něco špatně v tomto záznamu ?
A quantitative symmetry-based analysis of hyperacute ischemic stroke lesions in noncontrast computed tomography
R. Peter, P. Korfiatis, D. Blezek, A. Oscar Beitia, I. Stepan-Buksakowska, D. Horinek, KD. Flemming, BJ. Erickson,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
PubMed
28066898
DOI
10.1002/mp.12015
Knihovny.cz E-zdroje
- MeSH
- cévní mozková příhoda komplikace diagnostické zobrazování MeSH
- ischemie mozku komplikace MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- počítačová rentgenová tomografie * MeSH
- počítačové zpracování obrazu metody MeSH
- rozhodovací stromy MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- senzitivita a specificita MeSH
- support vector machine MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
PURPOSE: Early identification of ischemic stroke plays a significant role in treatment and potential recovery of damaged brain tissue. In noncontrast CT (ncCT), the differences between ischemic changes and healthy tissue are usually very subtle during the hyperacute phase (< 8 h from the stroke onset). Therefore, visual comparison of both hemispheres is an important step in clinical assessment. A quantitative symmetry-based analysis of texture features of ischemic lesions in noncontrast CT images may provide an important information for differentiation of ischemic and healthy brain tissue in this phase. METHODS: One hundred thirty-nine (139) ncCT scans of hyperacute ischemic stroke with follow-up magnetic resonance diffusion-weighted (MR-DW) images were collected. The regions of stroke were identified in the MR-DW images, which were spatially aligned to corresponding ncCT images. A state-of-the-art symmetric diffeomorphic image registration was utilized for the alignment of CT and MR-DW, for identification of individual brain hemispheres, and for localization of the region representing healthy tissue contralateral to the stroke cores. Texture analysis included extraction and classification of co-occurrence and run-length texture-based image features in the regions of ischemic stroke and their contralateral regions. RESULTS: The classification schemes achieved area under the receiver operating characteristic [Az] ≈ 0.82 for the whole dataset. There was no statistically significant difference in the performance of classifiers for the data sets with time between 2 and 8 hours from symptom onset. The performance of the classifiers did not depend on the size of the stroke regions. CONCLUSIONS: The results provide a set of optimal texture features which are suitable for distinguishing between hyperacute ischemic lesions and their corresponding contralateral brain tissue in noncontrast CT. This work is an initial step toward development of an automated decision support system for detection of hyperacute ischemic stroke lesions on noncontrast CT of the brain.
Department of Neurology Mayo Clinic 200 1st Street SW Rochester MN 55905 USA
Department of Radiology Mayo Clinic 200 1st Street SW Rochester MN 55905 USA
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17013310
- 003
- CZ-PrNML
- 005
- 20170418103327.0
- 007
- ta
- 008
- 170413s2017 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/mp.12015 $2 doi
- 035 __
- $a (PubMed)28066898
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Peter, Roman $u Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA. International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 65691 Brno, Czech Republic.
- 245 12
- $a A quantitative symmetry-based analysis of hyperacute ischemic stroke lesions in noncontrast computed tomography / $c R. Peter, P. Korfiatis, D. Blezek, A. Oscar Beitia, I. Stepan-Buksakowska, D. Horinek, KD. Flemming, BJ. Erickson,
- 520 9_
- $a PURPOSE: Early identification of ischemic stroke plays a significant role in treatment and potential recovery of damaged brain tissue. In noncontrast CT (ncCT), the differences between ischemic changes and healthy tissue are usually very subtle during the hyperacute phase (< 8 h from the stroke onset). Therefore, visual comparison of both hemispheres is an important step in clinical assessment. A quantitative symmetry-based analysis of texture features of ischemic lesions in noncontrast CT images may provide an important information for differentiation of ischemic and healthy brain tissue in this phase. METHODS: One hundred thirty-nine (139) ncCT scans of hyperacute ischemic stroke with follow-up magnetic resonance diffusion-weighted (MR-DW) images were collected. The regions of stroke were identified in the MR-DW images, which were spatially aligned to corresponding ncCT images. A state-of-the-art symmetric diffeomorphic image registration was utilized for the alignment of CT and MR-DW, for identification of individual brain hemispheres, and for localization of the region representing healthy tissue contralateral to the stroke cores. Texture analysis included extraction and classification of co-occurrence and run-length texture-based image features in the regions of ischemic stroke and their contralateral regions. RESULTS: The classification schemes achieved area under the receiver operating characteristic [Az] ≈ 0.82 for the whole dataset. There was no statistically significant difference in the performance of classifiers for the data sets with time between 2 and 8 hours from symptom onset. The performance of the classifiers did not depend on the size of the stroke regions. CONCLUSIONS: The results provide a set of optimal texture features which are suitable for distinguishing between hyperacute ischemic lesions and their corresponding contralateral brain tissue in noncontrast CT. This work is an initial step toward development of an automated decision support system for detection of hyperacute ischemic stroke lesions on noncontrast CT of the brain.
- 650 _2
- $a senioři $7 D000368
- 650 _2
- $a senioři nad 80 let $7 D000369
- 650 _2
- $a ischemie mozku $x komplikace $7 D002545
- 650 _2
- $a rozhodovací stromy $7 D003663
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a počítačové zpracování obrazu $x metody $7 D007091
- 650 _2
- $a magnetická rezonanční tomografie $7 D008279
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a senzitivita a specificita $7 D012680
- 650 _2
- $a cévní mozková příhoda $x komplikace $x diagnostické zobrazování $7 D020521
- 650 _2
- $a support vector machine $7 D060388
- 650 12
- $a počítačová rentgenová tomografie $7 D014057
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Korfiatis, Panagiotis $u Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
- 700 1_
- $a Blezek, Daniel $u Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
- 700 1_
- $a Oscar Beitia, A $u Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
- 700 1_
- $a Stepan-Buksakowska, Irena $u International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 65691 Brno, Czech Republic.
- 700 1_
- $a Horinek, Daniel $u International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 65691 Brno, Czech Republic.
- 700 1_
- $a Flemming, Kelly D $u Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
- 700 1_
- $a Erickson, Bradley J $u Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
- 773 0_
- $w MED00003245 $t Medical physics $x 2473-4209 $g Roč. 44, č. 1 (2017), s. 192-199
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/28066898 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20170413 $b ABA008
- 991 __
- $a 20170418103635 $b ABA008
- 999 __
- $a ok $b bmc $g 1199775 $s 974088
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 44 $c 1 $d 192-199 $e 20170108 $i 2473-4209 $m Medical physics $n Med Phys $x MED00003245
- LZP __
- $a Pubmed-20170413