-
Je něco špatně v tomto záznamu ?
Fucosyllactose and L-fucose utilization of infant Bifidobacterium longum and Bifidobacterium kashiwanohense
V. Bunesova, C. Lacroix, C. Schwab,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články
NLK
BioMedCentral
od 2001-12-01
BioMedCentral Open Access
od 2001
Directory of Open Access Journals
od 2001
Free Medical Journals
od 2001
PubMed Central
od 2001
Europe PubMed Central
od 2001
ProQuest Central
od 2009-01-01
Open Access Digital Library
od 2001-01-01
Open Access Digital Library
od 2001-02-01
Open Access Digital Library
od 2001-01-01
Medline Complete (EBSCOhost)
od 2001-01-01
Health & Medicine (ProQuest)
od 2009-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2001
Springer Nature OA/Free Journals
od 2001-12-01
- MeSH
- alfa-L-fukosidasa klasifikace genetika metabolismus MeSH
- beta-galaktosidasa metabolismus MeSH
- Bifidobacterium longum enzymologie genetika metabolismus MeSH
- Bifidobacterium enzymologie genetika metabolismus MeSH
- DNA bakterií genetika MeSH
- feces mikrobiologie MeSH
- fukosa metabolismus MeSH
- genom bakteriální MeSH
- kojenec MeSH
- kyseliny mastné těkavé metabolismus MeSH
- kyseliny sialové metabolismus MeSH
- laktosa analogy a deriváty metabolismus MeSH
- lidé MeSH
- mateřské mléko metabolismus MeSH
- metabolické sítě a dráhy MeSH
- oligosacharidy metabolismus MeSH
- propylenglykol metabolismus MeSH
- RNA ribozomální 16S genetika MeSH
- sekvence nukleotidů MeSH
- střeva mikrobiologie MeSH
- trisacharidy metabolismus MeSH
- Check Tag
- kojenec MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Human milk oligosaccharides (HMOs) are one of the major glycan source of the infant gut microbiota. The two species that predominate the infant bifidobacteria community, Bifidobacterium longum subsp. infantis and Bifidobacterium bifidum, possess an arsenal of enzymes including α-fucosidases, sialidases, and β-galactosidases to metabolise HMOs. Recently bifidobacteria were obtained from the stool of six month old Kenyan infants including species such as Bifidobacterium kashiwanohense, and Bifidobacterium pseudolongum that are not frequently isolated from infant stool. The aim of this study was to characterize HMOs utilization by these isolates. Strains were grown in presence of 2'-fucosyllactose (2'-FL), 3'-fucosyllactose (3'-FL), 3'-sialyl-lactose (3'-SL), 6'-sialyl-lactose (6'-SL), and Lacto-N-neotetraose (LNnT). We further investigated metabolites formed during L-fucose and fucosyllactose utilization, and aimed to identify genes and pathways involved through genome comparison. RESULTS: Bifidobacterium longum subsp. infantis isolates, Bifidobacterium longum subsp. suis BSM11-5 and B. kashiwanohense strains grew in the presence of 2'-FL and 3'- FL. All B. longum isolates utilized the L-fucose moiety, while B. kashiwanohense accumulated L-fucose in the supernatant. 1,2-propanediol (1,2-PD) was the major metabolite from L-fucose fermentation, and was formed in equimolar amounts by B. longum isolates. Alpha-fucosidases were detected in all strains that degraded fucosyllactose. B. longum subsp. infantis TPY11-2 harboured four α-fucosidases with 95-99 % similarity to the type strain. B. kashiwanohense DSM 21854 and PV20-2 possessed three and one α-fucosidase, respectively. The two α-fucosidases of B. longum subsp. suis were 78-80 % similar to B. longum subsp. infantis and were highly similar to B. kashiwanohense α-fucosidases (95-99 %). The genomes of B. longum strains that were capable of utilizing L-fucose harboured two gene regions that encoded enzymes predicted to metabolize L-fucose to L-lactaldehyde, the precursor of 1,2-PD, via non-phosphorylated intermediates. CONCLUSION: Here we observed that the ability to utilize fucosyllactose is a trait of various bifidobacteria species. For the first time, strains of B. longum subsp. infantis and an isolate of B. longum subsp. suis were shown to use L-fucose to form 1,2-PD. As 1,2-PD is a precursor for intestinal propionate formation, bifidobacterial L-fucose utilization may impact intestinal short chain fatty acid balance. A L-fucose utilization pathway for bifidobacteria is suggested.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17023579
- 003
- CZ-PrNML
- 005
- 20170828131920.0
- 007
- ta
- 008
- 170720s2016 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1186/s12866-016-0867-4 $2 doi
- 035 __
- $a (PubMed)27782805
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Bunesova, Vera $u Laboratory of Food Biotechnology, ETH Zurich, Institute of Food, Nutrition and Health, Schmelzbergstrasse 7, Zurich, Switzerland. Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic.
- 245 10
- $a Fucosyllactose and L-fucose utilization of infant Bifidobacterium longum and Bifidobacterium kashiwanohense / $c V. Bunesova, C. Lacroix, C. Schwab,
- 520 9_
- $a BACKGROUND: Human milk oligosaccharides (HMOs) are one of the major glycan source of the infant gut microbiota. The two species that predominate the infant bifidobacteria community, Bifidobacterium longum subsp. infantis and Bifidobacterium bifidum, possess an arsenal of enzymes including α-fucosidases, sialidases, and β-galactosidases to metabolise HMOs. Recently bifidobacteria were obtained from the stool of six month old Kenyan infants including species such as Bifidobacterium kashiwanohense, and Bifidobacterium pseudolongum that are not frequently isolated from infant stool. The aim of this study was to characterize HMOs utilization by these isolates. Strains were grown in presence of 2'-fucosyllactose (2'-FL), 3'-fucosyllactose (3'-FL), 3'-sialyl-lactose (3'-SL), 6'-sialyl-lactose (6'-SL), and Lacto-N-neotetraose (LNnT). We further investigated metabolites formed during L-fucose and fucosyllactose utilization, and aimed to identify genes and pathways involved through genome comparison. RESULTS: Bifidobacterium longum subsp. infantis isolates, Bifidobacterium longum subsp. suis BSM11-5 and B. kashiwanohense strains grew in the presence of 2'-FL and 3'- FL. All B. longum isolates utilized the L-fucose moiety, while B. kashiwanohense accumulated L-fucose in the supernatant. 1,2-propanediol (1,2-PD) was the major metabolite from L-fucose fermentation, and was formed in equimolar amounts by B. longum isolates. Alpha-fucosidases were detected in all strains that degraded fucosyllactose. B. longum subsp. infantis TPY11-2 harboured four α-fucosidases with 95-99 % similarity to the type strain. B. kashiwanohense DSM 21854 and PV20-2 possessed three and one α-fucosidase, respectively. The two α-fucosidases of B. longum subsp. suis were 78-80 % similar to B. longum subsp. infantis and were highly similar to B. kashiwanohense α-fucosidases (95-99 %). The genomes of B. longum strains that were capable of utilizing L-fucose harboured two gene regions that encoded enzymes predicted to metabolize L-fucose to L-lactaldehyde, the precursor of 1,2-PD, via non-phosphorylated intermediates. CONCLUSION: Here we observed that the ability to utilize fucosyllactose is a trait of various bifidobacteria species. For the first time, strains of B. longum subsp. infantis and an isolate of B. longum subsp. suis were shown to use L-fucose to form 1,2-PD. As 1,2-PD is a precursor for intestinal propionate formation, bifidobacterial L-fucose utilization may impact intestinal short chain fatty acid balance. A L-fucose utilization pathway for bifidobacteria is suggested.
- 650 _2
- $a sekvence nukleotidů $7 D001483
- 650 _2
- $a Bifidobacterium $x enzymologie $x genetika $x metabolismus $7 D001644
- 650 _2
- $a Bifidobacterium longum $x enzymologie $x genetika $x metabolismus $7 D000069978
- 650 _2
- $a DNA bakterií $x genetika $7 D004269
- 650 _2
- $a kyseliny mastné těkavé $x metabolismus $7 D005232
- 650 _2
- $a feces $x mikrobiologie $7 D005243
- 650 _2
- $a fukosa $x metabolismus $7 D005643
- 650 _2
- $a genom bakteriální $7 D016680
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a kojenec $7 D007223
- 650 _2
- $a střeva $x mikrobiologie $7 D007422
- 650 _2
- $a laktosa $x analogy a deriváty $x metabolismus $7 D007785
- 650 _2
- $a metabolické sítě a dráhy $7 D053858
- 650 _2
- $a mateřské mléko $x metabolismus $7 D008895
- 650 _2
- $a oligosacharidy $x metabolismus $7 D009844
- 650 _2
- $a propylenglykol $x metabolismus $7 D019946
- 650 _2
- $a RNA ribozomální 16S $x genetika $7 D012336
- 650 _2
- $a kyseliny sialové $x metabolismus $7 D012794
- 650 _2
- $a trisacharidy $x metabolismus $7 D014312
- 650 _2
- $a alfa-L-fukosidasa $x klasifikace $x genetika $x metabolismus $7 D005644
- 650 _2
- $a beta-galaktosidasa $x metabolismus $7 D001616
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Lacroix, Christophe $u Laboratory of Food Biotechnology, ETH Zurich, Institute of Food, Nutrition and Health, Schmelzbergstrasse 7, Zurich, Switzerland.
- 700 1_
- $a Schwab, Clarissa $u Laboratory of Food Biotechnology, ETH Zurich, Institute of Food, Nutrition and Health, Schmelzbergstrasse 7, Zurich, Switzerland. clarissa.schwab@hest.ethz.ch.
- 773 0_
- $w MED00008191 $t BMC microbiology $x 1471-2180 $g Roč. 16, č. 1 (2016), s. 248
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/27782805 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20170720 $b ABA008
- 991 __
- $a 20170828132506 $b ABA008
- 999 __
- $a ok $b bmc $g 1239260 $s 984492
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2016 $b 16 $c 1 $d 248 $e 20161026 $i 1471-2180 $m BMC microbiology $n BMC Microbiol $x MED00008191
- LZP __
- $a Pubmed-20170720