Detail
Článek
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Fucosyllactose and L-fucose utilization of infant Bifidobacterium longum and Bifidobacterium kashiwanohense

V. Bunesova, C. Lacroix, C. Schwab,

. 2016 ; 16 (1) : 248. [pub] 20161026

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc17023579

BACKGROUND: Human milk oligosaccharides (HMOs) are one of the major glycan source of the infant gut microbiota. The two species that predominate the infant bifidobacteria community, Bifidobacterium longum subsp. infantis and Bifidobacterium bifidum, possess an arsenal of enzymes including α-fucosidases, sialidases, and β-galactosidases to metabolise HMOs. Recently bifidobacteria were obtained from the stool of six month old Kenyan infants including species such as Bifidobacterium kashiwanohense, and Bifidobacterium pseudolongum that are not frequently isolated from infant stool. The aim of this study was to characterize HMOs utilization by these isolates. Strains were grown in presence of 2'-fucosyllactose (2'-FL), 3'-fucosyllactose (3'-FL), 3'-sialyl-lactose (3'-SL), 6'-sialyl-lactose (6'-SL), and Lacto-N-neotetraose (LNnT). We further investigated metabolites formed during L-fucose and fucosyllactose utilization, and aimed to identify genes and pathways involved through genome comparison. RESULTS: Bifidobacterium longum subsp. infantis isolates, Bifidobacterium longum subsp. suis BSM11-5 and B. kashiwanohense strains grew in the presence of 2'-FL and 3'- FL. All B. longum isolates utilized the L-fucose moiety, while B. kashiwanohense accumulated L-fucose in the supernatant. 1,2-propanediol (1,2-PD) was the major metabolite from L-fucose fermentation, and was formed in equimolar amounts by B. longum isolates. Alpha-fucosidases were detected in all strains that degraded fucosyllactose. B. longum subsp. infantis TPY11-2 harboured four α-fucosidases with 95-99 % similarity to the type strain. B. kashiwanohense DSM 21854 and PV20-2 possessed three and one α-fucosidase, respectively. The two α-fucosidases of B. longum subsp. suis were 78-80 % similar to B. longum subsp. infantis and were highly similar to B. kashiwanohense α-fucosidases (95-99 %). The genomes of B. longum strains that were capable of utilizing L-fucose harboured two gene regions that encoded enzymes predicted to metabolize L-fucose to L-lactaldehyde, the precursor of 1,2-PD, via non-phosphorylated intermediates. CONCLUSION: Here we observed that the ability to utilize fucosyllactose is a trait of various bifidobacteria species. For the first time, strains of B. longum subsp. infantis and an isolate of B. longum subsp. suis were shown to use L-fucose to form 1,2-PD. As 1,2-PD is a precursor for intestinal propionate formation, bifidobacterial L-fucose utilization may impact intestinal short chain fatty acid balance. A L-fucose utilization pathway for bifidobacteria is suggested.

000      
00000naa a2200000 a 4500
001      
bmc17023579
003      
CZ-PrNML
005      
20170828131920.0
007      
ta
008      
170720s2016 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1186/s12866-016-0867-4 $2 doi
035    __
$a (PubMed)27782805
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Bunesova, Vera $u Laboratory of Food Biotechnology, ETH Zurich, Institute of Food, Nutrition and Health, Schmelzbergstrasse 7, Zurich, Switzerland. Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic.
245    10
$a Fucosyllactose and L-fucose utilization of infant Bifidobacterium longum and Bifidobacterium kashiwanohense / $c V. Bunesova, C. Lacroix, C. Schwab,
520    9_
$a BACKGROUND: Human milk oligosaccharides (HMOs) are one of the major glycan source of the infant gut microbiota. The two species that predominate the infant bifidobacteria community, Bifidobacterium longum subsp. infantis and Bifidobacterium bifidum, possess an arsenal of enzymes including α-fucosidases, sialidases, and β-galactosidases to metabolise HMOs. Recently bifidobacteria were obtained from the stool of six month old Kenyan infants including species such as Bifidobacterium kashiwanohense, and Bifidobacterium pseudolongum that are not frequently isolated from infant stool. The aim of this study was to characterize HMOs utilization by these isolates. Strains were grown in presence of 2'-fucosyllactose (2'-FL), 3'-fucosyllactose (3'-FL), 3'-sialyl-lactose (3'-SL), 6'-sialyl-lactose (6'-SL), and Lacto-N-neotetraose (LNnT). We further investigated metabolites formed during L-fucose and fucosyllactose utilization, and aimed to identify genes and pathways involved through genome comparison. RESULTS: Bifidobacterium longum subsp. infantis isolates, Bifidobacterium longum subsp. suis BSM11-5 and B. kashiwanohense strains grew in the presence of 2'-FL and 3'- FL. All B. longum isolates utilized the L-fucose moiety, while B. kashiwanohense accumulated L-fucose in the supernatant. 1,2-propanediol (1,2-PD) was the major metabolite from L-fucose fermentation, and was formed in equimolar amounts by B. longum isolates. Alpha-fucosidases were detected in all strains that degraded fucosyllactose. B. longum subsp. infantis TPY11-2 harboured four α-fucosidases with 95-99 % similarity to the type strain. B. kashiwanohense DSM 21854 and PV20-2 possessed three and one α-fucosidase, respectively. The two α-fucosidases of B. longum subsp. suis were 78-80 % similar to B. longum subsp. infantis and were highly similar to B. kashiwanohense α-fucosidases (95-99 %). The genomes of B. longum strains that were capable of utilizing L-fucose harboured two gene regions that encoded enzymes predicted to metabolize L-fucose to L-lactaldehyde, the precursor of 1,2-PD, via non-phosphorylated intermediates. CONCLUSION: Here we observed that the ability to utilize fucosyllactose is a trait of various bifidobacteria species. For the first time, strains of B. longum subsp. infantis and an isolate of B. longum subsp. suis were shown to use L-fucose to form 1,2-PD. As 1,2-PD is a precursor for intestinal propionate formation, bifidobacterial L-fucose utilization may impact intestinal short chain fatty acid balance. A L-fucose utilization pathway for bifidobacteria is suggested.
650    _2
$a sekvence nukleotidů $7 D001483
650    _2
$a Bifidobacterium $x enzymologie $x genetika $x metabolismus $7 D001644
650    _2
$a Bifidobacterium longum $x enzymologie $x genetika $x metabolismus $7 D000069978
650    _2
$a DNA bakterií $x genetika $7 D004269
650    _2
$a kyseliny mastné těkavé $x metabolismus $7 D005232
650    _2
$a feces $x mikrobiologie $7 D005243
650    _2
$a fukosa $x metabolismus $7 D005643
650    _2
$a genom bakteriální $7 D016680
650    _2
$a lidé $7 D006801
650    _2
$a kojenec $7 D007223
650    _2
$a střeva $x mikrobiologie $7 D007422
650    _2
$a laktosa $x analogy a deriváty $x metabolismus $7 D007785
650    _2
$a metabolické sítě a dráhy $7 D053858
650    _2
$a mateřské mléko $x metabolismus $7 D008895
650    _2
$a oligosacharidy $x metabolismus $7 D009844
650    _2
$a propylenglykol $x metabolismus $7 D019946
650    _2
$a RNA ribozomální 16S $x genetika $7 D012336
650    _2
$a kyseliny sialové $x metabolismus $7 D012794
650    _2
$a trisacharidy $x metabolismus $7 D014312
650    _2
$a alfa-L-fukosidasa $x klasifikace $x genetika $x metabolismus $7 D005644
650    _2
$a beta-galaktosidasa $x metabolismus $7 D001616
655    _2
$a časopisecké články $7 D016428
700    1_
$a Lacroix, Christophe $u Laboratory of Food Biotechnology, ETH Zurich, Institute of Food, Nutrition and Health, Schmelzbergstrasse 7, Zurich, Switzerland.
700    1_
$a Schwab, Clarissa $u Laboratory of Food Biotechnology, ETH Zurich, Institute of Food, Nutrition and Health, Schmelzbergstrasse 7, Zurich, Switzerland. clarissa.schwab@hest.ethz.ch.
773    0_
$w MED00008191 $t BMC microbiology $x 1471-2180 $g Roč. 16, č. 1 (2016), s. 248
856    41
$u https://pubmed.ncbi.nlm.nih.gov/27782805 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20170720 $b ABA008
991    __
$a 20170828132506 $b ABA008
999    __
$a ok $b bmc $g 1239260 $s 984492
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 16 $c 1 $d 248 $e 20161026 $i 1471-2180 $m BMC microbiology $n BMC Microbiol $x MED00008191
LZP    __
$a Pubmed-20170720

Najít záznam

Citační ukazatele

Nahrávání dat...

Možnosti archivace

Nahrávání dat...