Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Evolution of Telomeres in Schizosaccharomyces pombe and Its Possible Relationship to the Diversification of Telomere Binding Proteins

R. Sepsiova, I. Necasova, S. Willcox, K. Prochazkova, P. Gorilak, J. Nosek, C. Hofr, JD. Griffith, L. Tomaska,

. 2016 ; 11 (4) : e0154225. [pub] 20160421

Language English Country United States

Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't

Telomeres of nuclear chromosomes are usually composed of an array of tandemly repeated sequences that are recognized by specific Myb domain containing DNA-binding proteins (telomere-binding proteins, TBPs). Whereas in many eukaryotes the length and sequence of the telomeric repeat is relatively conserved, telomeric sequences in various yeasts are highly variable. Schizosaccharomyces pombe provides an excellent model for investigation of co-evolution of telomeres and TBPs. First, telomeric repeats of S. pombe differ from the canonical mammalian type TTAGGG sequence. Second, S. pombe telomeres exhibit a high degree of intratelomeric heterogeneity. Third, S. pombe contains all types of known TBPs (Rap1p [a version unable to bind DNA], Tay1p/Teb1p, and Taz1p) that are employed by various yeast species to protect their telomeres. With the aim of reconstructing evolutionary paths leading to a separation of roles between Teb1p and Taz1p, we performed a comparative analysis of the DNA-binding properties of both proteins using combined qualitative and quantitative biochemical approaches. Visualization of DNA-protein complexes by electron microscopy revealed qualitative differences of binding of Teb1p and Taz1p to mammalian type and fission yeast telomeres. Fluorescence anisotropy analysis quantified the binding affinity of Teb1p and Taz1p to three different DNA substrates. Additionally, we carried out electrophoretic mobility shift assays using mammalian type telomeres and native substrates (telomeric repeats, histone-box sequences) as well as their mutated versions. We observed relative DNA sequence binding flexibility of Taz1p and higher binding stringency of Teb1p when both proteins were compared directly to each other. These properties may have driven replacement of Teb1p by Taz1p as the TBP in fission yeast.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc17024052
003      
CZ-PrNML
005      
20170720122413.0
007      
ta
008      
170720s2016 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1371/journal.pone.0154225 $2 doi
035    __
$a (PubMed)27101289
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Sepsiova, Regina $u Department of Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, Ilkovicova 6, 842 15, Bratislava, Slovak Republic.
245    10
$a Evolution of Telomeres in Schizosaccharomyces pombe and Its Possible Relationship to the Diversification of Telomere Binding Proteins / $c R. Sepsiova, I. Necasova, S. Willcox, K. Prochazkova, P. Gorilak, J. Nosek, C. Hofr, JD. Griffith, L. Tomaska,
520    9_
$a Telomeres of nuclear chromosomes are usually composed of an array of tandemly repeated sequences that are recognized by specific Myb domain containing DNA-binding proteins (telomere-binding proteins, TBPs). Whereas in many eukaryotes the length and sequence of the telomeric repeat is relatively conserved, telomeric sequences in various yeasts are highly variable. Schizosaccharomyces pombe provides an excellent model for investigation of co-evolution of telomeres and TBPs. First, telomeric repeats of S. pombe differ from the canonical mammalian type TTAGGG sequence. Second, S. pombe telomeres exhibit a high degree of intratelomeric heterogeneity. Third, S. pombe contains all types of known TBPs (Rap1p [a version unable to bind DNA], Tay1p/Teb1p, and Taz1p) that are employed by various yeast species to protect their telomeres. With the aim of reconstructing evolutionary paths leading to a separation of roles between Teb1p and Taz1p, we performed a comparative analysis of the DNA-binding properties of both proteins using combined qualitative and quantitative biochemical approaches. Visualization of DNA-protein complexes by electron microscopy revealed qualitative differences of binding of Teb1p and Taz1p to mammalian type and fission yeast telomeres. Fluorescence anisotropy analysis quantified the binding affinity of Teb1p and Taz1p to three different DNA substrates. Additionally, we carried out electrophoretic mobility shift assays using mammalian type telomeres and native substrates (telomeric repeats, histone-box sequences) as well as their mutated versions. We observed relative DNA sequence binding flexibility of Taz1p and higher binding stringency of Teb1p when both proteins were compared directly to each other. These properties may have driven replacement of Teb1p by Taz1p as the TBP in fission yeast.
650    _2
$a zvířata $7 D000818
650    _2
$a sekvence nukleotidů $7 D001483
650    _2
$a DNA vazebné proteiny $x genetika $x metabolismus $x ultrastruktura $7 D004268
650    _2
$a retardační test $7 D024202
650    _2
$a molekulární evoluce $7 D019143
650    _2
$a fluorescenční polarizace $7 D005454
650    _2
$a genetická variace $7 D014644
650    _2
$a lidé $7 D006801
650    _2
$a elektronová mikroskopie $7 D008854
650    _2
$a oligonukleotidy $x genetika $x metabolismus $7 D009841
650    _2
$a fylogeneze $7 D010802
650    _2
$a vazba proteinů $7 D011485
650    _2
$a Schizosaccharomyces $x genetika $7 D012568
650    _2
$a Schizosaccharomyces pombe - proteiny $x genetika $x metabolismus $x ultrastruktura $7 D029702
650    _2
$a telomery $x genetika $x metabolismus $x ultrastruktura $7 D016615
650    _2
$a proteiny vázající telomery $x klasifikace $x genetika $x metabolismus $x ultrastruktura $7 D034501
650    _2
$a transkripční faktory $x genetika $x metabolismus $x ultrastruktura $7 D014157
655    _2
$a časopisecké články $7 D016428
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Necasova, Ivona $u Chromatin Molecular Complexes, Central European Institute of Technology, Masaryk University, Brno, CZ-62500, Czech Republic. Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, CZ-62500, Czech Republic.
700    1_
$a Willcox, Smaranda $u Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States of America.
700    1_
$a Prochazkova, Katarina $u Department of Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, Ilkovicova 6, 842 15, Bratislava, Slovak Republic.
700    1_
$a Gorilak, Peter $u Department of Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, Ilkovicova 6, 842 15, Bratislava, Slovak Republic.
700    1_
$a Nosek, Jozef $u Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, Ilkovicova 6, 842 15, Bratislava, Slovak Republic.
700    1_
$a Hofr, Ctirad $u Chromatin Molecular Complexes, Central European Institute of Technology, Masaryk University, Brno, CZ-62500, Czech Republic. Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, CZ-62500, Czech Republic.
700    1_
$a Griffith, Jack D $u Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States of America.
700    1_
$a Tomaska, Lubomir $u Department of Genetics, Comenius University in Bratislava, Faculty of Natural Sciences, Ilkovicova 6, 842 15, Bratislava, Slovak Republic.
773    0_
$w MED00180950 $t PloS one $x 1932-6203 $g Roč. 11, č. 4 (2016), s. e0154225
856    41
$u https://pubmed.ncbi.nlm.nih.gov/27101289 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20170720 $b ABA008
991    __
$a 20170720122906 $b ABA008
999    __
$a ok $b bmc $g 1239733 $s 984965
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 11 $c 4 $d e0154225 $e 20160421 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
LZP    __
$a Pubmed-20170720

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...