• Je něco špatně v tomto záznamu ?

Objective voice and speech analysis of persons with chronic hoarseness by prosodic analysis of speech samples

T. Haderlein, M. Döllinger, V. Matoušek, E. Nöth,

. 2016 ; 41 (3) : 106-16. [pub] 20150527

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc17024245

Automatic voice assessment is often performed using sustained vowels. In contrast, speech analysis of read-out texts can be applied to voice and speech assessment. Automatic speech recognition and prosodic analysis were used to find regression formulae between automatic and perceptual assessment of four voice and four speech criteria. The regression was trained with 21 men and 62 women (average age 49.2 years) and tested with another set of 24 men and 49 women (48.3 years), all suffering from chronic hoarseness. They read the text 'Der Nordwind und die Sonne' ('The North Wind and the Sun'). Five voice and speech therapists evaluated the data on 5-point Likert scales. Ten prosodic and recognition accuracy measures (features) were identified which describe all the examined criteria. Inter-rater correlation within the expert group was between r = 0.63 for the criterion 'match of breath and sense units' and r = 0.87 for the overall voice quality. Human-machine correlation was between r = 0.40 for the match of breath and sense units and r = 0.82 for intelligibility. The perceptual ratings of different criteria were highly correlated with each other. Likewise, the feature sets modeling the criteria were very similar. The automatic method is suitable for assessing chronic hoarseness in general and for subgroups of functional and organic dysphonia. In its current version, it is almost as reliable as a randomly picked rater from a group of voice and speech therapists.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc17024245
003      
CZ-PrNML
005      
20170906115045.0
007      
ta
008      
170720s2016 enk f 000 0|eng||
009      
AR
024    7_
$a 10.3109/14015439.2015.1019563 $2 doi
035    __
$a (PubMed)26016644
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Haderlein, Tino $u a Universitätsklinikum Erlangen, Phoniatrische und pädaudiologische Abteilung , Bohlenplatz 21, 91054 Erlangen , Germany. b Západočeská univerzita v Plzni, Katedra informatiky a výpočetní techniky , Univerzitní 8, 306 14 Plzeň , Czech Republic.
245    10
$a Objective voice and speech analysis of persons with chronic hoarseness by prosodic analysis of speech samples / $c T. Haderlein, M. Döllinger, V. Matoušek, E. Nöth,
520    9_
$a Automatic voice assessment is often performed using sustained vowels. In contrast, speech analysis of read-out texts can be applied to voice and speech assessment. Automatic speech recognition and prosodic analysis were used to find regression formulae between automatic and perceptual assessment of four voice and four speech criteria. The regression was trained with 21 men and 62 women (average age 49.2 years) and tested with another set of 24 men and 49 women (48.3 years), all suffering from chronic hoarseness. They read the text 'Der Nordwind und die Sonne' ('The North Wind and the Sun'). Five voice and speech therapists evaluated the data on 5-point Likert scales. Ten prosodic and recognition accuracy measures (features) were identified which describe all the examined criteria. Inter-rater correlation within the expert group was between r = 0.63 for the criterion 'match of breath and sense units' and r = 0.87 for the overall voice quality. Human-machine correlation was between r = 0.40 for the match of breath and sense units and r = 0.82 for intelligibility. The perceptual ratings of different criteria were highly correlated with each other. Likewise, the feature sets modeling the criteria were very similar. The automatic method is suitable for assessing chronic hoarseness in general and for subgroups of functional and organic dysphonia. In its current version, it is almost as reliable as a randomly picked rater from a group of voice and speech therapists.
650    _2
$a akustika $7 D000162
650    _2
$a mladiství $7 D000293
650    _2
$a dospělí $7 D000328
650    _2
$a senioři $7 D000368
650    _2
$a senioři nad 80 let $7 D000369
650    _2
$a chronická nemoc $7 D002908
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a chrapot $x diagnóza $x patofyziologie $7 D006685
650    _2
$a lidé $7 D006801
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a lidé středního věku $7 D008875
650    12
$a rozpoznávání automatizované $7 D010363
650    _2
$a prediktivní hodnota testů $7 D011237
650    _2
$a čtení $7 D011932
650    _2
$a regresní analýza $7 D012044
650    _2
$a reprodukovatelnost výsledků $7 D015203
650    12
$a počítačové zpracování signálu $7 D012815
650    12
$a akustika řeči $7 D013061
650    _2
$a měření tvorby řeči $x metody $7 D013068
650    _2
$a support vector machine $7 D060388
650    12
$a kvalita hlasu $7 D014833
650    _2
$a mladý dospělý $7 D055815
655    _2
$a časopisecké články $7 D016428
700    1_
$a Döllinger, Michael $u a Universitätsklinikum Erlangen, Phoniatrische und pädaudiologische Abteilung , Bohlenplatz 21, 91054 Erlangen , Germany. c Louisiana State University, Communication Sciences and Disorders Department , 63 Hatcher Hall, Baton Rouge , LA 70803 , USA.
700    1_
$a Matoušek, Václav $u b Západočeská univerzita v Plzni, Katedra informatiky a výpočetní techniky , Univerzitní 8, 306 14 Plzeň , Czech Republic.
700    1_
$a Nöth, Elmar $u d Universität Erlangen-Nürnberg, Lehrstuhl für Mustererkennung , Martensstraße 3, 91058 Erlangen , Germany. e King Abdulaziz University, Electrical & Computer Engineering Department, Faculty of Engineering , Jeddah 21589, Saudi Arabia.
773    0_
$w MED00004978 $t Logopedics, phoniatrics, vocology $x 1651-2022 $g Roč. 41, č. 3 (2016), s. 106-16
856    41
$u https://pubmed.ncbi.nlm.nih.gov/26016644 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20170720 $b ABA008
991    __
$a 20170906115643 $b ABA008
999    __
$a ok $b bmc $g 1239926 $s 985158
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 41 $c 3 $d 106-16 $e 20150527 $i 1651-2022 $m Logopedics, Phoniatrics, Vocology $n Logoped Phoniatr Vocol $x MED00004978
LZP    __
$a Pubmed-20170720

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...