-
Je něco špatně v tomto záznamu ?
Sparse Proteomics Analysis - a compressed sensing-based approach for feature selection and classification of high-dimensional proteomics mass spectrometry data
TO. Conrad, M. Genzel, N. Cvetkovic, N. Wulkow, A. Leichtle, J. Vybiral, G. Kutyniok, C. Schütte,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články
NLK
BioMedCentral
od 2000-01-12
BioMedCentral Open Access
od 2000
Directory of Open Access Journals
od 2000
Free Medical Journals
od 2000
PubMed Central
od 2000
Europe PubMed Central
od 2000
ProQuest Central
od 2009-01-01
Open Access Digital Library
od 2000-01-01
Open Access Digital Library
od 2000-01-01
Open Access Digital Library
od 2000-07-01
Medline Complete (EBSCOhost)
od 2000-01-01
Health & Medicine (ProQuest)
od 2009-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2000
Springer Nature OA/Free Journals
od 2000-12-01
- MeSH
- algoritmy MeSH
- databáze faktografické MeSH
- lidé MeSH
- nádory slinivky břišní diagnóza genetika MeSH
- počítačová simulace MeSH
- proteomika metody MeSH
- reprodukovatelnost výsledků MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice metody MeSH
- strojové učení MeSH
- studie případů a kontrol MeSH
- teoretické modely MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: High-throughput proteomics techniques, such as mass spectrometry (MS)-based approaches, produce very high-dimensional data-sets. In a clinical setting one is often interested in how mass spectra differ between patients of different classes, for example spectra from healthy patients vs. spectra from patients having a particular disease. Machine learning algorithms are needed to (a) identify these discriminating features and (b) classify unknown spectra based on this feature set. Since the acquired data is usually noisy, the algorithms should be robust against noise and outliers, while the identified feature set should be as small as possible. RESULTS: We present a new algorithm, Sparse Proteomics Analysis (SPA), based on the theory of compressed sensing that allows us to identify a minimal discriminating set of features from mass spectrometry data-sets. We show (1) how our method performs on artificial and real-world data-sets, (2) that its performance is competitive with standard (and widely used) algorithms for analyzing proteomics data, and (3) that it is robust against random and systematic noise. We further demonstrate the applicability of our algorithm to two previously published clinical data-sets.
Department of Mathematical Analysis Charles University Düsternbrooker Weg 20 Prague Czech Republic
Department of Mathematics Freie Universität Berlin Arnimallee 6 Berlin Germany
Department of Mathematics Technische Universität Berlin Düsternbrooker Weg 20 Berlin Germany
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17030981
- 003
- CZ-PrNML
- 005
- 20171030115906.0
- 007
- ta
- 008
- 171025s2017 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1186/s12859-017-1565-4 $2 doi
- 035 __
- $a (PubMed)28274197
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Conrad, Tim O F $u Department of Mathematics, Freie Universität Berlin, Arnimallee 6, Berlin, Germany. conrad@math.fu-berlin.de. Zuse Institute Berlin, Takustr. 7, Berlin, Germany. conrad@math.fu-berlin.de.
- 245 10
- $a Sparse Proteomics Analysis - a compressed sensing-based approach for feature selection and classification of high-dimensional proteomics mass spectrometry data / $c TO. Conrad, M. Genzel, N. Cvetkovic, N. Wulkow, A. Leichtle, J. Vybiral, G. Kutyniok, C. Schütte,
- 520 9_
- $a BACKGROUND: High-throughput proteomics techniques, such as mass spectrometry (MS)-based approaches, produce very high-dimensional data-sets. In a clinical setting one is often interested in how mass spectra differ between patients of different classes, for example spectra from healthy patients vs. spectra from patients having a particular disease. Machine learning algorithms are needed to (a) identify these discriminating features and (b) classify unknown spectra based on this feature set. Since the acquired data is usually noisy, the algorithms should be robust against noise and outliers, while the identified feature set should be as small as possible. RESULTS: We present a new algorithm, Sparse Proteomics Analysis (SPA), based on the theory of compressed sensing that allows us to identify a minimal discriminating set of features from mass spectrometry data-sets. We show (1) how our method performs on artificial and real-world data-sets, (2) that its performance is competitive with standard (and widely used) algorithms for analyzing proteomics data, and (3) that it is robust against random and systematic noise. We further demonstrate the applicability of our algorithm to two previously published clinical data-sets.
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a studie případů a kontrol $7 D016022
- 650 _2
- $a počítačová simulace $7 D003198
- 650 _2
- $a databáze faktografické $7 D016208
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a strojové učení $7 D000069550
- 650 _2
- $a teoretické modely $7 D008962
- 650 _2
- $a nádory slinivky břišní $x diagnóza $x genetika $7 D010190
- 650 _2
- $a proteomika $x metody $7 D040901
- 650 _2
- $a reprodukovatelnost výsledků $7 D015203
- 650 _2
- $a spektrometrie hmotnostní - ionizace laserem za účasti matrice $x metody $7 D019032
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Genzel, Martin $u Department of Mathematics, Technische Universität Berlin, Düsternbrooker Weg 20, Berlin, Germany.
- 700 1_
- $a Cvetkovic, Nada $u Department of Mathematics, Freie Universität Berlin, Arnimallee 6, Berlin, Germany.
- 700 1_
- $a Wulkow, Niklas $u Department of Mathematics, Freie Universität Berlin, Arnimallee 6, Berlin, Germany.
- 700 1_
- $a Leichtle, Alexander $u Center of Laboratory Medicine, Inselspital - Bern University Hospital, Düsternbrooker Weg 20, Bern, 24105, Switzerland.
- 700 1_
- $a Vybiral, Jan $u Department of Mathematical Analysis, Charles University, Düsternbrooker Weg 20, Prague, Czech Republic.
- 700 1_
- $a Kutyniok, Gitta $u Department of Mathematics, Technische Universität Berlin, Düsternbrooker Weg 20, Berlin, Germany.
- 700 1_
- $a Schütte, Christof $u Department of Mathematics, Freie Universität Berlin, Arnimallee 6, Berlin, Germany. Zuse Institute Berlin, Takustr. 7, Berlin, Germany.
- 773 0_
- $w MED00008167 $t BMC bioinformatics $x 1471-2105 $g Roč. 18, č. 1 (2017), s. 160
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/28274197 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20171025 $b ABA008
- 991 __
- $a 20171030115954 $b ABA008
- 999 __
- $a ok $b bmc $g 1254574 $s 992008
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 18 $c 1 $d 160 $e 20170309 $i 1471-2105 $m BMC bioinformatics $n BMC Bioinformatics $x MED00008167
- LZP __
- $a Pubmed-20171025