-
Something wrong with this record ?
A structure-function analysis of the yeast Elg1 protein reveals the importance of PCNA unloading in genome stability maintenance
K. Shemesh, M. Sebesta, M. Pacesa, S. Sau, A. Bronstein, O. Parnas, B. Liefshitz, C. Venclovas, L. Krejci, M. Kupiec,
Language English Country England, Great Britain
Document type Journal Article
NLK
Directory of Open Access Journals
from 2005
Free Medical Journals
from 1996
PubMed Central
from 1974
Europe PubMed Central
from 1974
Open Access Digital Library
from 1996-01-01 to 2030-12-31
Open Access Digital Library
from 1974-01-01
Open Access Digital Library
from 1996-01-01
Open Access Digital Library
from 1996-01-01
Medline Complete (EBSCOhost)
from 1996-01-01
Oxford Journals Open Access Collection
from 1996-01-01
ROAD: Directory of Open Access Scholarly Resources
from 1974
PubMed
28108661
DOI
10.1093/nar/gkw1348
Knihovny.cz E-resources
- MeSH
- Chromatin metabolism MeSH
- DNA Helicases genetics MeSH
- DNA biosynthesis MeSH
- Methyl Methanesulfonate toxicity MeSH
- Mutation MeSH
- Genomic Instability * MeSH
- DNA Damage * MeSH
- Proliferating Cell Nuclear Antigen metabolism MeSH
- Recombination, Genetic MeSH
- Saccharomyces cerevisiae Proteins chemistry genetics metabolism MeSH
- Structural Homology, Protein MeSH
- Suppression, Genetic MeSH
- Carrier Proteins chemistry genetics metabolism MeSH
- Structure-Activity Relationship MeSH
- Publication type
- Journal Article MeSH
The sliding clamp, PCNA, plays a central role in DNA replication and repair. In the moving replication fork, PCNA is present at the leading strand and at each of the Okazaki fragments that are formed on the lagging strand. PCNA enhances the processivity of the replicative polymerases and provides a landing platform for other proteins and enzymes. The loading of the clamp onto DNA is performed by the Replication Factor C (RFC) complex, whereas its unloading can be carried out by an RFC-like complex containing Elg1. Mutations in ELG1 lead to DNA damage sensitivity and genome instability. To characterize the role of Elg1 in maintaining genomic integrity, we used homology modeling to generate a number of site-specific mutations in ELG1 that exhibit different PCNA unloading capabilities. We show that the sensitivity to DNA damaging agents and hyper-recombination of these alleles correlate with their ability to unload PCNA from the chromatin. Our results indicate that retention of modified and unmodified PCNA on the chromatin causes genomic instability. We also show, using purified proteins, that the Elg1 complex inhibits DNA synthesis by unloading SUMOylated PCNA from the DNA. Additionally, we find that mutations in ELG1 suppress the sensitivity of rad5Δ mutants to DNA damage by allowing trans-lesion synthesis to take place. Taken together, the data indicate that the Elg1-RLC complex plays an important role in the maintenance of genomic stability by unloading PCNA from the chromatin.
Department of Biology Masaryk University CZ 625 00 Brno Czech Republic
Department of Molecular Microbiology and Biotechnology Ramat Aviv 69978 Israel
Institute of Biotechnology Vilnius University Graiciuno 8 Vilnius LT 02241 Lithuania
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17031115
- 003
- CZ-PrNML
- 005
- 20171025115427.0
- 007
- ta
- 008
- 171025s2017 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1093/nar/gkw1348 $2 doi
- 035 __
- $a (PubMed)28108661
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Shemesh, Keren $u Department of Molecular Microbiology and Biotechnology, Ramat Aviv 69978, Israel.
- 245 12
- $a A structure-function analysis of the yeast Elg1 protein reveals the importance of PCNA unloading in genome stability maintenance / $c K. Shemesh, M. Sebesta, M. Pacesa, S. Sau, A. Bronstein, O. Parnas, B. Liefshitz, C. Venclovas, L. Krejci, M. Kupiec,
- 520 9_
- $a The sliding clamp, PCNA, plays a central role in DNA replication and repair. In the moving replication fork, PCNA is present at the leading strand and at each of the Okazaki fragments that are formed on the lagging strand. PCNA enhances the processivity of the replicative polymerases and provides a landing platform for other proteins and enzymes. The loading of the clamp onto DNA is performed by the Replication Factor C (RFC) complex, whereas its unloading can be carried out by an RFC-like complex containing Elg1. Mutations in ELG1 lead to DNA damage sensitivity and genome instability. To characterize the role of Elg1 in maintaining genomic integrity, we used homology modeling to generate a number of site-specific mutations in ELG1 that exhibit different PCNA unloading capabilities. We show that the sensitivity to DNA damaging agents and hyper-recombination of these alleles correlate with their ability to unload PCNA from the chromatin. Our results indicate that retention of modified and unmodified PCNA on the chromatin causes genomic instability. We also show, using purified proteins, that the Elg1 complex inhibits DNA synthesis by unloading SUMOylated PCNA from the DNA. Additionally, we find that mutations in ELG1 suppress the sensitivity of rad5Δ mutants to DNA damage by allowing trans-lesion synthesis to take place. Taken together, the data indicate that the Elg1-RLC complex plays an important role in the maintenance of genomic stability by unloading PCNA from the chromatin.
- 650 _2
- $a transportní proteiny $x chemie $x genetika $x metabolismus $7 D002352
- 650 _2
- $a chromatin $x metabolismus $7 D002843
- 650 _2
- $a DNA $x biosyntéza $7 D004247
- 650 12
- $a poškození DNA $7 D004249
- 650 _2
- $a DNA-helikasy $x genetika $7 D004265
- 650 12
- $a nestabilita genomu $7 D042822
- 650 _2
- $a methylmethansulfonát $x toxicita $7 D008741
- 650 _2
- $a mutace $7 D009154
- 650 _2
- $a proliferační antigen buněčného jádra $x metabolismus $7 D018809
- 650 _2
- $a rekombinace genetická $7 D011995
- 650 _2
- $a Saccharomyces cerevisiae - proteiny $x chemie $x genetika $x metabolismus $7 D029701
- 650 _2
- $a strukturní homologie proteinů $7 D040681
- 650 _2
- $a vztahy mezi strukturou a aktivitou $7 D013329
- 650 _2
- $a suprese genetická $7 D013489
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Sebesta, Marek $u Department of Biology, Masaryk University, CZ-625 00 Brno, Czech Republic.
- 700 1_
- $a Pacesa, Martin $u Department of Biology, Masaryk University, CZ-625 00 Brno, Czech Republic.
- 700 1_
- $a Sau, Soumitra $u Department of Molecular Microbiology and Biotechnology, Ramat Aviv 69978, Israel.
- 700 1_
- $a Bronstein, Alex $u Department of Molecular Microbiology and Biotechnology, Ramat Aviv 69978, Israel.
- 700 1_
- $a Parnas, Oren $u Department of Molecular Microbiology and Biotechnology, Ramat Aviv 69978, Israel.
- 700 1_
- $a Liefshitz, Batia $u Department of Molecular Microbiology and Biotechnology, Ramat Aviv 69978, Israel.
- 700 1_
- $a Venclovas, Ceslovas $u Institute of Biotechnology, Vilnius University, Graiciuno 8, Vilnius LT-02241, Lithuania.
- 700 1_
- $a Krejci, Lumir $u Department of Biology, Masaryk University, CZ-625 00 Brno, Czech Republic. National Center for Biomolecular Research, Masaryk University, CZ-625 00 Brno, Czech Republic. International Clinical Research Center, St. Anne's University Hospital in Brno, CZ- 656 91 Brno, Czech Republic.
- 700 1_
- $a Kupiec, Martin $u Department of Molecular Microbiology and Biotechnology, Ramat Aviv 69978, Israel.
- 773 0_
- $w MED00003554 $t Nucleic acids research $x 1362-4962 $g Roč. 45, č. 6 (2017), s. 3189-3203
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/28108661 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20171025 $b ABA008
- 991 __
- $a 20171025115509 $b ABA008
- 999 __
- $a ok $b bmc $g 1254708 $s 992142
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 45 $c 6 $d 3189-3203 $i 1362-4962 $m Nucleic acids research $n Nucleic Acids Res $x MED00003554
- LZP __
- $a Pubmed-20171025