-
Je něco špatně v tomto záznamu ?
Hypoxic HepG2 cell adaptation decreases ATP synthase dimers and ATP production in inflated cristae by mitofilin down-regulation concomitant to MICOS clustering
L. Plecitá-Hlavatá, H. Engstová, L. Alán, T. Špaček, A. Dlasková, K. Smolková, J. Špačková, J. Tauber, V. Strádalová, J. Malínský, M. Lessard, J. Bewersdorf, P. Ježek,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
PubMed
26887443
DOI
10.1096/fj.201500176
Knihovny.cz E-zdroje
- MeSH
- adenosintrifosfát biosyntéza MeSH
- ATP-synthetasa (komplexy) metabolismus MeSH
- buňky Hep G2 MeSH
- down regulace MeSH
- fyziologická adaptace fyziologie MeSH
- interakční proteinové domény a motivy MeSH
- kyslík * MeSH
- lidé MeSH
- mitochondriální dynamika fyziologie MeSH
- mitochondriální proteiny genetika metabolismus MeSH
- mitochondrie fyziologie MeSH
- multiproteinové komplexy fyziologie MeSH
- podjednotky proteinů MeSH
- regulace genové exprese fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The relationship of the inner mitochondrial membrane (IMM) cristae structure and intracristal space (ICS) to oxidative phosphorylation (oxphos) is not well understood. Mitofilin (subunit Mic60) of the mitochondrial contact site and cristae organizing system (MICOS) IMM complex is attached to the outer membrane (OMM) via the sorting and assembly machinery/topogenesis of mitochondrial outer membrane β-barrel proteins (SAM/TOB) complex and controls the shape of the cristae. ATP synthase dimers determine sharp cristae edges, whereas trimeric OPA1 tightens ICS outlets. Metabolism is altered during hypoxia, and we therefore studied cristae morphology in HepG2 cells adapted to 5% oxygen for 72 h. Three dimensional (3D), super-resolution biplane fluorescence photoactivation localization microscopy with Eos-conjugated, ICS-located lactamase-β indicated hypoxic ICS expansion with an unchanged OMM (visualized by Eos-mitochondrial fission protein-1). 3D direct stochastic optical reconstruction microscopy immunocytochemistry revealed foci of clustered mitofilin (but not MICOS subunit Mic19) in contrast to its even normoxic distribution. Mitofilin mRNA and protein decreased by ∼20%. ATP synthase dimers vs monomers and state-3/state-4 respiration ratios were lower during hypoxia. Electron microscopy confirmed ICS expansion (maximum in glycolytic cells), which was absent in reduced or OMM-detached cristae of OPA1- and mitofilin-silenced cells, respectively. Hypoxic adaptation is reported as rounding sharp cristae edges and expanding cristae width (ICS) by partial mitofilin/Mic60 down-regulation. Mitofilin-depleted MICOS detaches from SAM while remaining MICOS with mitofilin redistributes toward higher interdistances. This phenomenon causes partial oxphos dormancy in glycolytic cells via disruption of ATP synthase dimers.-Plecitá-Hlavatá, L., Engstová, H., Alán, L., Špaček, T., Dlasková, A., Smolková, K., Špačková, J., Tauber, J., Strádalová, V., Malínský, J., Lessard, M., Bewersdorf, J., Ježek, P. Hypoxic HepG2 cell adaptation decreases ATP synthase dimers and ATP production in inflated cristae by mitofilin down-regulation concomitant to MICOS clustering.
Department of Cell Biology Yale University New Haven Connecticut USA
Department of Membrane Transport Biophysics Department No 75 Institute of Physiology and
Institute for Molecular Biophysics The Jackson Laboratory Bar Harbor Maine USA
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17031849
- 003
- CZ-PrNML
- 005
- 20171102115902.0
- 007
- ta
- 008
- 171025s2016 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1096/fj.201500176 $2 doi
- 035 __
- $a (PubMed)26887443
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Plecitá-Hlavatá, Lydie $u Department of Membrane Transport Biophysics, Department No. 75, Institute of Physiology, and.
- 245 10
- $a Hypoxic HepG2 cell adaptation decreases ATP synthase dimers and ATP production in inflated cristae by mitofilin down-regulation concomitant to MICOS clustering / $c L. Plecitá-Hlavatá, H. Engstová, L. Alán, T. Špaček, A. Dlasková, K. Smolková, J. Špačková, J. Tauber, V. Strádalová, J. Malínský, M. Lessard, J. Bewersdorf, P. Ježek,
- 520 9_
- $a The relationship of the inner mitochondrial membrane (IMM) cristae structure and intracristal space (ICS) to oxidative phosphorylation (oxphos) is not well understood. Mitofilin (subunit Mic60) of the mitochondrial contact site and cristae organizing system (MICOS) IMM complex is attached to the outer membrane (OMM) via the sorting and assembly machinery/topogenesis of mitochondrial outer membrane β-barrel proteins (SAM/TOB) complex and controls the shape of the cristae. ATP synthase dimers determine sharp cristae edges, whereas trimeric OPA1 tightens ICS outlets. Metabolism is altered during hypoxia, and we therefore studied cristae morphology in HepG2 cells adapted to 5% oxygen for 72 h. Three dimensional (3D), super-resolution biplane fluorescence photoactivation localization microscopy with Eos-conjugated, ICS-located lactamase-β indicated hypoxic ICS expansion with an unchanged OMM (visualized by Eos-mitochondrial fission protein-1). 3D direct stochastic optical reconstruction microscopy immunocytochemistry revealed foci of clustered mitofilin (but not MICOS subunit Mic19) in contrast to its even normoxic distribution. Mitofilin mRNA and protein decreased by ∼20%. ATP synthase dimers vs monomers and state-3/state-4 respiration ratios were lower during hypoxia. Electron microscopy confirmed ICS expansion (maximum in glycolytic cells), which was absent in reduced or OMM-detached cristae of OPA1- and mitofilin-silenced cells, respectively. Hypoxic adaptation is reported as rounding sharp cristae edges and expanding cristae width (ICS) by partial mitofilin/Mic60 down-regulation. Mitofilin-depleted MICOS detaches from SAM while remaining MICOS with mitofilin redistributes toward higher interdistances. This phenomenon causes partial oxphos dormancy in glycolytic cells via disruption of ATP synthase dimers.-Plecitá-Hlavatá, L., Engstová, H., Alán, L., Špaček, T., Dlasková, A., Smolková, K., Špačková, J., Tauber, J., Strádalová, V., Malínský, J., Lessard, M., Bewersdorf, J., Ježek, P. Hypoxic HepG2 cell adaptation decreases ATP synthase dimers and ATP production in inflated cristae by mitofilin down-regulation concomitant to MICOS clustering.
- 650 _2
- $a ATP-synthetasa (komplexy) $x metabolismus $7 D025181
- 650 _2
- $a fyziologická adaptace $x fyziologie $7 D000222
- 650 _2
- $a adenosintrifosfát $x biosyntéza $7 D000255
- 650 _2
- $a down regulace $7 D015536
- 650 _2
- $a regulace genové exprese $x fyziologie $7 D005786
- 650 _2
- $a buňky Hep G2 $7 D056945
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a mitochondrie $x fyziologie $7 D008928
- 650 _2
- $a mitochondriální dynamika $x fyziologie $7 D063154
- 650 _2
- $a mitochondriální proteiny $x genetika $x metabolismus $7 D024101
- 650 _2
- $a multiproteinové komplexy $x fyziologie $7 D046912
- 650 12
- $a kyslík $7 D010100
- 650 _2
- $a interakční proteinové domény a motivy $7 D054730
- 650 _2
- $a podjednotky proteinů $7 D021122
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Engstová, Hana $u Department of Membrane Transport Biophysics, Department No. 75, Institute of Physiology, and.
- 700 1_
- $a Alán, Lukáš $u Department of Membrane Transport Biophysics, Department No. 75, Institute of Physiology, and. $7 gn_A_00003279
- 700 1_
- $a Špaček, Tomáš $u Department of Membrane Transport Biophysics, Department No. 75, Institute of Physiology, and.
- 700 1_
- $a Dlasková, Andrea $u Department of Membrane Transport Biophysics, Department No. 75, Institute of Physiology, and.
- 700 1_
- $a Smolková, Katarína $u Department of Membrane Transport Biophysics, Department No. 75, Institute of Physiology, and.
- 700 1_
- $a Špačková, Jitka $u Department of Membrane Transport Biophysics, Department No. 75, Institute of Physiology, and.
- 700 1_
- $a Tauber, Jan $u Department of Membrane Transport Biophysics, Department No. 75, Institute of Physiology, and.
- 700 1_
- $a Strádalová, Vendula $u Microscopy Unit, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic;
- 700 1_
- $a Malínský, Jan $u Microscopy Unit, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic;
- 700 1_
- $a Lessard, Mark $u Institute for Molecular Biophysics, The Jackson Laboratory, Bar Harbor, Maine, USA; and.
- 700 1_
- $a Bewersdorf, Joerg $u Department of Cell Biology, Yale University, New Haven, Connecticut, USA.
- 700 1_
- $a Ježek, Petr $u Department of Membrane Transport Biophysics, Department No. 75, Institute of Physiology, and jezek@biomed.cas.cz.
- 773 0_
- $w MED00001782 $t FASEB journal official publication of the Federation of American Societies for Experimental Biology $x 1530-6860 $g Roč. 30, č. 5 (2016), s. 1941-57
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/26887443 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20171025 $b ABA008
- 991 __
- $a 20171102115955 $b ABA008
- 999 __
- $a ok $b bmc $g 1255442 $s 992876
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2016 $b 30 $c 5 $d 1941-57 $e 20160217 $i 1530-6860 $m The FASEB journal $n FASEB J $x MED00001782
- LZP __
- $a Pubmed-20171025