• Je něco špatně v tomto záznamu ?

Hypoxic HepG2 cell adaptation decreases ATP synthase dimers and ATP production in inflated cristae by mitofilin down-regulation concomitant to MICOS clustering

L. Plecitá-Hlavatá, H. Engstová, L. Alán, T. Špaček, A. Dlasková, K. Smolková, J. Špačková, J. Tauber, V. Strádalová, J. Malínský, M. Lessard, J. Bewersdorf, P. Ježek,

. 2016 ; 30 (5) : 1941-57. [pub] 20160217

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc17031849

The relationship of the inner mitochondrial membrane (IMM) cristae structure and intracristal space (ICS) to oxidative phosphorylation (oxphos) is not well understood. Mitofilin (subunit Mic60) of the mitochondrial contact site and cristae organizing system (MICOS) IMM complex is attached to the outer membrane (OMM) via the sorting and assembly machinery/topogenesis of mitochondrial outer membrane β-barrel proteins (SAM/TOB) complex and controls the shape of the cristae. ATP synthase dimers determine sharp cristae edges, whereas trimeric OPA1 tightens ICS outlets. Metabolism is altered during hypoxia, and we therefore studied cristae morphology in HepG2 cells adapted to 5% oxygen for 72 h. Three dimensional (3D), super-resolution biplane fluorescence photoactivation localization microscopy with Eos-conjugated, ICS-located lactamase-β indicated hypoxic ICS expansion with an unchanged OMM (visualized by Eos-mitochondrial fission protein-1). 3D direct stochastic optical reconstruction microscopy immunocytochemistry revealed foci of clustered mitofilin (but not MICOS subunit Mic19) in contrast to its even normoxic distribution. Mitofilin mRNA and protein decreased by ∼20%. ATP synthase dimers vs monomers and state-3/state-4 respiration ratios were lower during hypoxia. Electron microscopy confirmed ICS expansion (maximum in glycolytic cells), which was absent in reduced or OMM-detached cristae of OPA1- and mitofilin-silenced cells, respectively. Hypoxic adaptation is reported as rounding sharp cristae edges and expanding cristae width (ICS) by partial mitofilin/Mic60 down-regulation. Mitofilin-depleted MICOS detaches from SAM while remaining MICOS with mitofilin redistributes toward higher interdistances. This phenomenon causes partial oxphos dormancy in glycolytic cells via disruption of ATP synthase dimers.-Plecitá-Hlavatá, L., Engstová, H., Alán, L., Špaček, T., Dlasková, A., Smolková, K., Špačková, J., Tauber, J., Strádalová, V., Malínský, J., Lessard, M., Bewersdorf, J., Ježek, P. Hypoxic HepG2 cell adaptation decreases ATP synthase dimers and ATP production in inflated cristae by mitofilin down-regulation concomitant to MICOS clustering.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc17031849
003      
CZ-PrNML
005      
20171102115902.0
007      
ta
008      
171025s2016 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1096/fj.201500176 $2 doi
035    __
$a (PubMed)26887443
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Plecitá-Hlavatá, Lydie $u Department of Membrane Transport Biophysics, Department No. 75, Institute of Physiology, and.
245    10
$a Hypoxic HepG2 cell adaptation decreases ATP synthase dimers and ATP production in inflated cristae by mitofilin down-regulation concomitant to MICOS clustering / $c L. Plecitá-Hlavatá, H. Engstová, L. Alán, T. Špaček, A. Dlasková, K. Smolková, J. Špačková, J. Tauber, V. Strádalová, J. Malínský, M. Lessard, J. Bewersdorf, P. Ježek,
520    9_
$a The relationship of the inner mitochondrial membrane (IMM) cristae structure and intracristal space (ICS) to oxidative phosphorylation (oxphos) is not well understood. Mitofilin (subunit Mic60) of the mitochondrial contact site and cristae organizing system (MICOS) IMM complex is attached to the outer membrane (OMM) via the sorting and assembly machinery/topogenesis of mitochondrial outer membrane β-barrel proteins (SAM/TOB) complex and controls the shape of the cristae. ATP synthase dimers determine sharp cristae edges, whereas trimeric OPA1 tightens ICS outlets. Metabolism is altered during hypoxia, and we therefore studied cristae morphology in HepG2 cells adapted to 5% oxygen for 72 h. Three dimensional (3D), super-resolution biplane fluorescence photoactivation localization microscopy with Eos-conjugated, ICS-located lactamase-β indicated hypoxic ICS expansion with an unchanged OMM (visualized by Eos-mitochondrial fission protein-1). 3D direct stochastic optical reconstruction microscopy immunocytochemistry revealed foci of clustered mitofilin (but not MICOS subunit Mic19) in contrast to its even normoxic distribution. Mitofilin mRNA and protein decreased by ∼20%. ATP synthase dimers vs monomers and state-3/state-4 respiration ratios were lower during hypoxia. Electron microscopy confirmed ICS expansion (maximum in glycolytic cells), which was absent in reduced or OMM-detached cristae of OPA1- and mitofilin-silenced cells, respectively. Hypoxic adaptation is reported as rounding sharp cristae edges and expanding cristae width (ICS) by partial mitofilin/Mic60 down-regulation. Mitofilin-depleted MICOS detaches from SAM while remaining MICOS with mitofilin redistributes toward higher interdistances. This phenomenon causes partial oxphos dormancy in glycolytic cells via disruption of ATP synthase dimers.-Plecitá-Hlavatá, L., Engstová, H., Alán, L., Špaček, T., Dlasková, A., Smolková, K., Špačková, J., Tauber, J., Strádalová, V., Malínský, J., Lessard, M., Bewersdorf, J., Ježek, P. Hypoxic HepG2 cell adaptation decreases ATP synthase dimers and ATP production in inflated cristae by mitofilin down-regulation concomitant to MICOS clustering.
650    _2
$a ATP-synthetasa (komplexy) $x metabolismus $7 D025181
650    _2
$a fyziologická adaptace $x fyziologie $7 D000222
650    _2
$a adenosintrifosfát $x biosyntéza $7 D000255
650    _2
$a down regulace $7 D015536
650    _2
$a regulace genové exprese $x fyziologie $7 D005786
650    _2
$a buňky Hep G2 $7 D056945
650    _2
$a lidé $7 D006801
650    _2
$a mitochondrie $x fyziologie $7 D008928
650    _2
$a mitochondriální dynamika $x fyziologie $7 D063154
650    _2
$a mitochondriální proteiny $x genetika $x metabolismus $7 D024101
650    _2
$a multiproteinové komplexy $x fyziologie $7 D046912
650    12
$a kyslík $7 D010100
650    _2
$a interakční proteinové domény a motivy $7 D054730
650    _2
$a podjednotky proteinů $7 D021122
655    _2
$a časopisecké články $7 D016428
700    1_
$a Engstová, Hana $u Department of Membrane Transport Biophysics, Department No. 75, Institute of Physiology, and.
700    1_
$a Alán, Lukáš $u Department of Membrane Transport Biophysics, Department No. 75, Institute of Physiology, and. $7 gn_A_00003279
700    1_
$a Špaček, Tomáš $u Department of Membrane Transport Biophysics, Department No. 75, Institute of Physiology, and.
700    1_
$a Dlasková, Andrea $u Department of Membrane Transport Biophysics, Department No. 75, Institute of Physiology, and.
700    1_
$a Smolková, Katarína $u Department of Membrane Transport Biophysics, Department No. 75, Institute of Physiology, and.
700    1_
$a Špačková, Jitka $u Department of Membrane Transport Biophysics, Department No. 75, Institute of Physiology, and.
700    1_
$a Tauber, Jan $u Department of Membrane Transport Biophysics, Department No. 75, Institute of Physiology, and.
700    1_
$a Strádalová, Vendula $u Microscopy Unit, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic;
700    1_
$a Malínský, Jan $u Microscopy Unit, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic;
700    1_
$a Lessard, Mark $u Institute for Molecular Biophysics, The Jackson Laboratory, Bar Harbor, Maine, USA; and.
700    1_
$a Bewersdorf, Joerg $u Department of Cell Biology, Yale University, New Haven, Connecticut, USA.
700    1_
$a Ježek, Petr $u Department of Membrane Transport Biophysics, Department No. 75, Institute of Physiology, and jezek@biomed.cas.cz.
773    0_
$w MED00001782 $t FASEB journal official publication of the Federation of American Societies for Experimental Biology $x 1530-6860 $g Roč. 30, č. 5 (2016), s. 1941-57
856    41
$u https://pubmed.ncbi.nlm.nih.gov/26887443 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20171025 $b ABA008
991    __
$a 20171102115955 $b ABA008
999    __
$a ok $b bmc $g 1255442 $s 992876
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 30 $c 5 $d 1941-57 $e 20160217 $i 1530-6860 $m The FASEB journal $n FASEB J $x MED00001782
LZP    __
$a Pubmed-20171025

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...