Regional associations between cerebrovascular disease and cholinergic white matter pathways in the Lewy body continuum
Status In-Process Language English Country United States Media electronic
Document type Journal Article
Grant support
2022-00916
Swedish Research Council (Vetenskapsrådet)
2022-00916
Swedish Research Council (Vetenskapsrådet)
PubMed
40841717
DOI
10.1038/s41531-025-01118-5
PII: 10.1038/s41531-025-01118-5
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Cerebrovascular disease is common in patients on the Lewy body (LB) continuum (dementia with Lewy bodies (DLB) and prodromal-DLB). White matter signal abnormality (WMSA) volume is higher in patients with LB than controls, both globally and in cholinergic white matter. However, it remains unknown if the higher WMSA in cholinergic white matter reflects selective cholinergic vulnerability or results from higher global WMSA. We modelled cingulate and external capsule cholinergic white matter pathways using MRI and segmented WMSA overlapping cholinergic pathways and per brain lobe. We found that patients on the LB-continuum (n = 33) had higher volume and proportion of WMSA in the cholinergic white matter compared to controls (n = 36), independent of global WMSA. Cholinergic WMSA was associated with neurodegeneration in the basal forebrain, decreased integrity of cingulate and external capsule pathways and attention and memory performance. These findings may suggest a selective vulnerability of cholinergic pathways in patients with LB.
Center of Biomedical Investigation Network for Neurodegenerative Diseases Madrid Spain
Centre for Age Related Medicine Stavanger University Hospital Stavanger Norway
Clinical Institute of Radiology University Medical Center Ljubljana Ljubljana Slovenia
Department of Neurology University Medical Centre Ljubljana Ljubljana Slovenia
Facultad de Ciencias de la Salud Universidad Fernando Pessoa Canarias Las Palmas España
See more in PubMed
Hogan, D. B. et al. The prevalence and incidence of dementia with Lewy bodies: a systematic review. Can. J. Neurol. Sci. 43, S83–S95 (2016). PubMed
Kane, J. P. M. et al. Clinical prevalence of Lewy body dementia. Alzheimer’s Res. Ther. 10, 19–19 (2018).
Vann Jones, S. A. & O’Brien, J. T. The prevalence and incidence of dementia with Lewy bodies: a systematic review of population and clinical studies. Psychol. Med. 44, 673–683 (2014). PubMed
McKeith, I. G. et al. Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology 89, 88–100 (2017). PubMed PMC
McKeith, I. G. et al. Research criteria for the diagnosis of prodromal dementia with Lewy bodies. Neurology 94, 743–755 (2020). PubMed PMC
Park, H.-E. et al. Subcortical whiter matter hyperintensities within the cholinergic pathways of patients with dementia and parkinsonism. J. Neurol. Sci. 353, 44–48 (2015). PubMed
Shimada, H. et al. Dementia with Lewy bodies can be well-differentiated from Alzheimer’s disease by measurement of brain acetylcholinesterase activity-a [11C]MP4A PET study. Int. J. Geriatr. Psychiatry 30, 1105–1113 (2015). PubMed
Grothe, M. J. et al. Atrophy of the cholinergic basal forebrain in dementia with Lewy bodies and Alzheimer’s disease dementia. J. Neurol. 261, 1939–1948 (2014). PubMed
Colloby, S. J., Elder, G. J., Rabee, R., O’Brien, J. T. & Taylor, J.-P. Structural grey matter changes in the substantia innominata in Alzheimer’s disease and dementia with Lewy bodies: a DARTEL-VBM study. Int. J. Geriatr. Psychiatry 32, 615–623 (2017). PubMed
Shimada, H. et al. Mapping of brain acetylcholinesterase alterations in Lewy body disease by PET. Neurology 73, 273–278 (2009). PubMed
Schumacher, J. et al. Cholinergic white matter pathways in dementia with Lewy bodies and Alzheimer’s disease. Brain145, 1773–1784 (2022). PubMed
Schumacher, J. et al. Free water imaging of the cholinergic system in dementia with Lewy bodies and Alzheimer’s disease. Alzheimer’s Dement. https://doi.org/10.1002/alz.13034 (2023).
Hanyu, H. et al. MR features of the substantia innominata and therapeutic implications in dementias. Neurobiol. aging 28, 548–554 (2007). PubMed
Kim, H. J., Lee, J. E., Shin, S. J., Sohn, Y. H. & Lee, P. H. Analysis of the substantia innominata volume in patients with Parkinson’s disease with dementia, dementia with lewy bodies, and Alzheimer’s disease. J. Mov. Disord. 4, 68–72 (2011). PubMed PMC
Okkels, N. et al. Cholinergic changes in Lewy body disease: implications for presentation, progression and subtypes. Brain https://doi.org/10.1093/brain/awae069 (2024). PubMed
Fujishiro, H. et al. Depletion of cholinergic neurons in the nucleus of the medial septum and the vertical limb of the diagonal band in dementia with Lewy bodies. Acta Neuropathol. 111, 109–114 (2006). PubMed
Watts, K. E., Storr, N. J., Barr, P. G. & Rajkumar, A. P. Systematic review of pharmacological interventions for people with Lewy body dementia. Aging Ment. Health 27, 203–216 (2023). PubMed
Xu, H. et al. Long-term effects of cholinesterase inhibitors and memantine on cognitive decline, cardiovascular events, and mortality in dementia with Lewy bodies: an up to 10-year follow-up study. Alzheimer’s Dement. https://doi.org/10.1002/alz.14118 (2024).
Selden, N. R., Gitelman, D. R., Salamon-Murayama, N., Parrish, T. B. & Mesulam, M. M. Trajectories of cholinergic pathways within the cerebral hemispheres of the human brain. Brain121, 2249–2257 (1998). PubMed
Cedres, N. et al. Association of cerebrovascular and Alzheimer disease biomarkers with cholinergic white matter degeneration in cognitively unimpaired individuals. Neurology 99, e1619–e1629 (2022). PubMed PMC
Nemy, M. et al. Cholinergic white matter pathways make a stronger contribution to attention and memory in normal aging than cerebrovascular health and nucleus basalis of Meynert. NeuroImage211, 116607–116607 (2020). PubMed
Jerele, C. et al. Cerebrovascular co-pathology and cholinergic white matter pathways along the Lewy body continuum. Brain Commun. https://doi.org/10.1093/braincomms/fcaf173 (2025). PubMed PMC
Lin, C. P. et al. Structural (dys)connectivity associates with cholinergic cell density in Alzheimer’s disease. Brain145, 2869–2881 (2022). PubMed PMC
Liu, Q. et al. White matter damage in the cholinergic system contributes to cognitive impairment in subcortical vascular cognitive impairment, no dementia. Front. Aging Neurosci. 9, 47–47 (2017). PubMed PMC
Nemy, M. et al. Cholinergic white matter pathways along the Alzheimer’s disease continuum. Brain https://doi.org/10.1093/brain/awac385 (2022). PMC
Qiu, T. et al. Degeneration of cholinergic white matter pathways and nucleus basalis of Meynert in individuals with objective subtle cognitive impairment. Neurobiol. Aging 132, 198–208 (2023). PubMed
Hijazi, Z., Yassi, N., O’Brien, J. T. & Watson, R. The influence of cerebrovascular disease in dementia with Lewy bodies and Parkinson’s disease dementia. Eur. J. Neurol. 29, 1254–1265 (2022). PubMed
Rennie, A. et al. Cerebrovascular and Alzheimer’s disease biomarkers in dementia with Lewy bodies and other dementias. Brain Commun. https://doi.org/10.1093/braincomms/fcae290 (2024). PubMed PMC
Duering, M. et al. Neuroimaging standards for research into small vessel disease-advances since 2013. Lancet Neurol. https://doi.org/10.1016/S1474-4422(23)00131-X (2023). PubMed
Sarro, L. et al. An investigation of cerebrovascular lesions in dementia with Lewy bodies compared to Alzheimer’s disease. Alzheimer’s Dement. 13, 257–266 (2017).
Roquet, D. et al. Insular atrophy at the prodromal stage of dementia with Lewy bodies: a VBM DARTEL study. Sci. Rep. 7, 9437–9410 (2017). PubMed PMC
Ferreira, D. et al. Cross-sectional Associations of β-Amyloid, Tau, and cerebrovascular biomarkers with neurodegeneration in probable dementia with lewy bodies. Neurology 100, e846–e859 (2023). PubMed PMC
Chiu, S. Y. et al. Longitudinal free-water changes in dementia with lewy bodies. Mov. Disord. 39, 836–846 (2024). PubMed PMC
Fathy, Y. Y. et al. Axonal degeneration in the anterior insular cortex is associated with Alzheimer’s co-pathology in Parkinson’s disease and dementia with Lewy bodies. Transl. Neurodegen. 11, 52 (2022).
Whitwell, J. L. et al. Focal atrophy in dementia with Lewy bodies on MRI: a distinct pattern from Alzheimer’s disease. Brain130, 708–719 (2007). PubMed
Ferreira, D. et al. Cerebrovascular disease, neurodegeneration, and clinical phenotype in dementia with Lewy bodies. Neurobiol. Aging 105, 252–261 (2021). PubMed PMC
Habich, A., Wahlund, L. O., Westman, E., Dierks, T. & Ferreira, D. Dis-)Connected dots in dementia with lewy bodies—a systematic review of connectivity studies. Mov. Disord 38, 4–15 (2023). PubMed
Chen, T.-Y., Chan, P.-C., Tsai, C.-F., Wei, C.-Y. & Chiu, P.-Y. White matter hyperintensities in dementia with Lewy bodies are associated with poorer cognitive function and higher dementia stages. Front. Aging Neurosci. 14, 935652. https://doi.org/10.3389/fnagi.2022.935652 (2022). PubMed PMC
Membreno, R. et al. Regional white matter hyperintensities relate to specific cognitive abilities in older adults without dementia. Alzheimer Dis. Assoc. Disord. 37, 303–309 (2023). PubMed PMC
Pozorski, V. et al. Cross-sectional and longitudinal associations between total and regional white matter hyperintensity volume and cognitive and motor function in Parkinson’s disease. NeuroImage Clin. 23, 101870. https://doi.org/10.1016/j.nicl.2019.101870 (2019). PubMed PMC
Coenen, M. et al. Strategic white matter hyperintensity locations for cognitive impairment: a multicenter lesion-symptom mapping study in 3525 memory clinic patients. Alzheimer’s Dement19, 2420–2432 (2023).
Skogseth, R. et al. Accuracy of clinical diagnosis of dementia with lewy bodies versus neuropathology. J. Alzheimer’s Dis. 59, 1139–1152 (2017).
Peña-Casanova, J. et al. Spanish Multicenter Normative Studies (NEURONORMA Project): norms for verbal span, visuospatial span, letter and number sequencing, trail making test, and symbol digit modalities test. Arch. Clin. Neuropsychol. 24, 321–341 (2009). PubMed
Wechsler, D. Wechsler Adult Intelligence Scale-Third Edition (WAIS-III). Administration and scoring manual (The Psychological Corporation, 1997).
Groth-Marnat, G. & Baker, S. Digit span as a measure of everyday attention: a study of ecological validity. Percept. Mot. Skills 97, 1209–1218 (2003). PubMed
Alcolea, D. et al. The Sant Pau Initiative on Neurodegeneration (SPIN) cohort: a data set for biomarker discovery and validation in neurodegenerative disorders. Alzheimer’s Dement.5, 597–609 (2019).
Folstein, M. F., Folstein, S. E. & McHugh, P. R. “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12, 189–198 (1975). PubMed
Blesa, R. et al. Clinical validity of the ‘mini-mental state’ for Spanish speaking communities. Neuropsychologia 39, 1150–1157 (2001). PubMed
Ballinger, E. C., Ananth, M., Talmage, D. A. & Role, L. W. Basal forebrain cholinergic circuits and signaling in cognition and cognitive decline. Neuron91, 1199–1218 (2016). PubMed PMC
Peña-Casanova, J. et al. Spanish Multicenter Normative Studies (NEURONORMA Project): norms for the Rey–Osterrieth Complex Figure (Copy and Memory), and Free and Cued Selective Reminding Test. Arch. Clin. Neuropsychol. 24, 371–393 (2009). PubMed
Buschke, H. Cued recall in amnesia. J. Clin. Neuropsychol. 6, 433–440 (1984). PubMed
Alcolea, D. et al. Agreement of amyloid PET and CSF biomarkers for Alzheimer’s disease on Lumipulse. Ann. Clin. Transl. Neurol. 6, 1815–1824 (2019). PubMed PMC
Muehlboeck, J. S., Westman, E. & Simmons, A. TheHiveDB image data management and analysis framework. Front. Neuroinform. 7, 49 (2014). PubMed PMC
Kilimann, I. et al. Subregional basal forebrain atrophy in Alzheimer’s disease: a multicenter study. J. Alzheimer’s Dis. 40, 687–700 (2014).
Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W. & Smith, S. M. FSL. NeuroImage62, 782–790 (2012). PubMed
Behrens, T. E. J. et al. Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn. Reson. Med. 50, 1077–1088 (2003). PubMed
Mori, S. MRI atlas of human white matter. 1st edn, (Elsevier, 2005).
Zhang, Y., Brady, M. & Smith, S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. imaging 20, 45–57 (2001). PubMed
Fischl, B. FreeSurfer. NeuroImage62, 774–781 (2012). PubMed
Cedres, N. et al. Predicting Fazekas scores from automatic segmentations of white matter signal abnormalities. Aging12, 894–901 (2020). PubMed PMC
Wei, K. et al. White matter hypointensities and hyperintensities have equivalent correlations with age and CSF β-amyloid in the nondemented elderly. Brain and behavior 9, e01457-n/a https://doi.org/10.1002/brb3.1457 (2019).
Mohanty, R., Ferreira, D. & Westman, E. Multi-pathological contributions toward atrophy patterns in the Alzheimer’s disease continuum. Front. Neurosci. 18, 1355695–1355695 (2024). PubMed PMC
Salat, D. H. et al. Regional white matter volume differences in nondemented aging and Alzheimer’s disease. NeuroImage44, 1247–1258 (2009). PubMed
Klein, A. & Tourville, J. 101 labeled brain images and a consistent human cortical labeling protocol. Front. Neurosci. 6, 171–171 (2012). PubMed PMC
Voevodskaya, O. et al. The effects of intracranial volume adjustment approaches on multiple regional MRI volumes in healthy aging and Alzheimer’s disease. Front. Aging Neurosci. 6, 264–264 (2014). PubMed PMC