Cerebrovascular co-pathology and cholinergic white matter pathways along the Lewy body continuum

. 2025 ; 7 (3) : fcaf173. [epub] 20250506

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40391186

Dementia with Lewy bodies often presents with cholinergic degeneration and varying degrees of cerebrovascular disease. There is a lack of radiological methods for evaluating cholinergic degeneration in dementia with Lewy bodies. We investigated the potential of the Cholinergic Pathway Hyperintensities Scale (CHIPS) in identifying cerebrovascular disease-related disruptions in cholinergic white matter pathways, offering a practical and accessible method for assessing cholinergic integrity in neurodegenerative diseases. We assessed the associations of CHIPS with regional brain atrophy, Alzheimer's disease co-pathology and clinical phenotype. Additionally, we compared its diagnostic performance to that of other manual and automated evaluation methods. We included 82 individuals (41 patients in the Lewy body continuum with either probable dementia with Lewy bodies or mild cognitive impairment with Lewy bodies, and 41 healthy controls) from the Sant Pau Initiative on Neurodegeneration cohort. We used CHIPS to assess cholinergic white matter signal abnormalities (WMSA) on MRI, while tractography mean diffusivity provided a complementary measure of cholinergic WMSA. For global WMSA evaluation, we used the Fazekas scale and FreeSurfer. CHIPS successfully identified cerebrovascular disease-related disruptions in cholinergic white matter pathways, as evidenced by its association with tractography and global WMSA markers (P < 0.005 for all associations). Lewy body patients showed a significantly higher degree of WMSA in the external capsule cholinergic pathway despite no significant differences in global WMSA compared to controls. CHIPS score in the posterior external capsule and the mean diffusivity in the external capsule and cingulum exceeded the threshold for an optimal biomarker (sensitivity and specificity values above 80%) in discriminating Lewy body patients from controls. Furthermore, higher CHIPS scores, Fazekas scale and tractography mean diffusivity were associated with more pronounced frontal atrophy in Lewy body patients but not in controls. No associations were found for the four WMSA and integrity methods with the core clinical features, clinical or cognitive measures, or CSF biomarkers. In conclusion, cholinergic WMSA were more pronounced in Lewy body patients compared to healthy controls, independently of global WMSA. Our findings indicate that cerebrovascular disease-related disruptions in cholinergic white matter may be linked to frontal atrophy in Lewy body patients. Clinically, we demonstrate the potential of CHIPS to assess cholinergic WMSA using widely available MRI sequences. Our data suggest cerebrovascular disease co-pathology could drive the cholinergic degeneration in Lewy body patients, opening opportunities for therapeutic interventions targeting vascular health from mild cognitive impairment with Lewy bodies through manifest dementia with Lewy bodies.

Zobrazit více v PubMed

Aarsland  D, Rongve  A, Piepenstock Nore  S, et al.  Frequency and case identification of dementia with Lewy bodies using the revised consensus criteria. Dement Geriatr Cogn Disord. 2008;26(5):445–452. PubMed

Kane  JPM, Surendranathan  A, Bentley  A, et al.  Clinical prevalence of Lewy body dementia. Alzheimers Res Ther. 2018;10(1):19. PubMed PMC

De Reuck  J, Maurage  CA, Deramecourt  V, et al.  Aging and cerebrovascular lesions in pure and in mixed neurodegenerative and vascular dementia brains: A neuropathological study. Folia Neuropathol. 2018;56(2):81–87. PubMed

Watson  R, Colloby  SJ. Imaging in dementia with Lewy bodies: An overview. J Geriatr Psychiatry Neurol. 2016;29(5):254–260. PubMed

Ferreira  D, Nedelska  Z, Graff-Radford  J, et al.  Cerebrovascular disease, neurodegeneration, and clinical phenotype in dementia with Lewy bodies. Neurobiol Aging. 2021;105(May):252–261. PubMed PMC

Ferreira  D, Przybelski  SA, Lesnick  TG, et al.  Cross-sectional associations of β-amyloid, tau, and cerebrovascular biomarkers with neurodegeneration in probable dementia with Lewy bodies. Neurology. 2023;100(8):E846–E859. PubMed PMC

Burton  EJ, McKeith  IG, Burn  DJ, Firbank  MJ, O’Brien  JT. Progression of white matter hyperintensities in Alzheimer disease, dementia with Lewy bodies, and Parkinson disease dementia: A comparison with normal aging. Am J Geriatr Psychiatry. 2006;14(10):842–849. PubMed

Prins  ND, Van Dijk  EJ, Den Heijer  T, et al.  Cerebral white matter lesions and the risk of dementia. Arch Neurol. 2004;61(10):1531–1534. PubMed

Smith  EE, Salat  DH, Jeng  J, et al.  Correlations between MRI white matter lesion location and executive function and episodic memory. Neurology. 2011;76(17):1492–1499. PubMed PMC

Joki  H, Higashiyama  Y, Nakae  Y, et al.  White matter hyperintensities on MRI in dementia with Lewy bodies, Parkinson’s disease with dementia, and Alzheimer’s disease. J Neurol Sci. 2018;385:99–104. PubMed

Lee  JE, Park  B, Song  SK, Sohn  YH, Park  H-J, Lee  PH. A comparison of gray and white matter density in patients with Parkinson’s disease dementia and dementia with Lewy bodies using voxel-based morphometry. Mov Disord. 2010;25(1):28–34. PubMed

Bohnen  NI, Grothe  MJ, Ray  NJ, Müller  MLTM, Teipel  SJ. Recent advances in cholinergic imaging and cognitive decline—Revisiting the cholinergic hypothesis of dementia. Curr Geriatr Rep. 2018;7(1):1–11. PubMed PMC

Schumacher  J, Ray  NJ, Hamilton  CA, et al.  Cholinergic white matter pathways in dementia with Lewy bodies and Alzheimer’s disease. Brain. 2022;145(5):1773–1784. PubMed PMC

Schumacher  J, Ray  NJ, Hamilton  CA, et al.  Free water imaging of the cholinergic system in dementia with Lewy bodies and Alzheimer’s disease. Alzheimers Dement. 2023;19:4549–4563. PubMed

Bocti  C, Swartz  RH, Gao  F-Q, Sahlas  DJ, Behl  P, Black  SE. A new visual rating scale to assess strategic white matter hyperintensities within cholinergic pathways in dementia. Stroke. 2005;36(10):2126–2131. PubMed

Behl  P, Bocti  C, Swartz  RH, et al.  Strategic subcortical hyperintensities in cholinergic pathways and executive function decline in treated Alzheimer patients. Arch Neurol. 2007;64(2):266–272. PubMed

Hanning  U, Teuber  A, Lang  E, Trenkwalder  C, Mollenhauer  B, Minnerup  H. White matter hyperintensities are not associated with cognitive decline in early Parkinson’s disease—The DeNoPa cohort. Parkinsonism Relat Disord. 2019;69(March):61–67. PubMed

Kim  H-J, Moon  W-J, Han  S-H. Differential cholinergic pathway involvement in Alzheimer’s disease and subcortical ischemic vascular dementia. J Alzheimers Dis. 2013;35(1):129–136. PubMed

Park  H-E, Park  I-S, Oh  Y-S, et al.  Subcortical whiter matter hyperintensities within the cholinergic pathways of patients with dementia and parkinsonism. J Neurol Sci. 2015;353(1–2):44–48. PubMed

Shin  J, Choi  S, Lee  JE, Lee  HS, Sohn  YH, Lee  PH. Subcortical white matter hyperintensities within the cholinergic pathways of Parkinson’s disease patients according to cognitive status. J Neurol Neurosurg Psychiatry. 2012;83(3):315–321. PubMed

Alcolea  D, Clarimón  J, Carmona-Iragui  M, et al.  The Sant Pau Initiative on Neurodegeneration (SPIN) cohort: A data set for biomarker discovery and validation in neurodegenerative disorders. Alzheimers Dement. 2019;5:597–609. PubMed PMC

Mckeith  IG, Boeve  BF, Dickson  DW, et al.  Diagnosis and management of dementia with Lewy bodies: Fourth consensus report of the DLB Consortium. Neurology. 2017;89(1):88–100. PubMed PMC

McKeith  IG, Ferman  TJ, Thomas  AJ, et al.  Research criteria for the diagnosis of prodromal dementia with Lewy bodies. Neurology. 2020;94(17):743–755. PubMed PMC

Fazekas  F, Chawluk  JB, Alavi  A, Hurtig  HI, Zimmerman  RA. MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol.  1987;149(2):351–356. PubMed

Nemy  M, Cedres  N, Grothe  MJ, et al.  Cholinergic white matter pathways make a stronger contribution to attention and memory in normal aging than cerebrovascular health and nucleus basalis of Meynert. Neuroimage. 2020;211:116607. PubMed

Landis  JR, Koch  GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159–174. PubMed

Fischl  B. FreeSurfer. Neuroimage. 2012;62(2):774–781. PubMed PMC

Riphagen  JM, Gronenschild  EH, Salat  DH, et al.  Shades of white: Diffusion properties of T1- and FLAIR-defined white matter signal abnormalities differ in stages from cognitively normal to dementia. Neurobiol Aging. 2018;68:48–58. PubMed

Olsson  E, Klasson  N, Berge  J, et al.  White matter lesion assessment in patients with cognitive impairment and healthy controls: Reliability comparisons between visual rating, a manual, and an automatic volumetrical MRI method—The Gothenburg MCI study. J Aging Res. 2013;2013:198471. PubMed PMC

Cedres  N, Ferreira  D, Machado  A, et al.  Predicting Fazekas scores from automatic segmentations of white matter signal abnormalities. Aging (Albany NY).  2020;12(1):894–901. PubMed PMC

Leritz  EC, Shepel  J, Williams  VJ, et al.  Associations between T1 white matter lesion volume and regional white matter microstructure in aging. Hum Brain Mapp. 2014;35(3):1085–1100. PubMed PMC

Salat  DH, Tuch  DS, van der Kouwe  AJW, et al.  White matter pathology isolates the hippocampal formation in Alzheimer’s disease. Neurobiol Aging. 2010;31(2):244–256. PubMed PMC

Muehlboeck  JS, Westman  E, Simmons  A. TheHiveDB image data management and analysis framework. Front Neuroinform. 2013;7(JAN):49. PubMed PMC

Jenkinson  M, Beckmann  CF, Behrens  TEJ, Woolrich  MW, Smith  SM. FSL. Neuroimage. 2012;62(2):782–790. PubMed

Reber  PJ, Wong  EC, Buxton  RB, Frank  LR. Correction of off resonance-related distortion in echo-planar imaging using EPI-based field maps. Magn Reson Med. 1998;39(2):328–330. PubMed

Smith  SM. Fast robust automated brain extraction. Hum Brain Mapp. 2002;17(3):143–155. PubMed PMC

Behrens  TEJ, Woolrich  MW, Jenkinson  M, et al.  Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med. 2003;50(5):1077–1088. PubMed

Kilimann  I, Grothe  M, Heinsen  H, et al.  Subregional basal forebrain atrophy in Alzheimer’s disease: A multicenter study. J Alzheimers Dis. 2014;40(3):687–700. PubMed PMC

Selden  NR, Gitelman  DR, Salamon-Murayama  N, Parrish  TB, Mesulam  MM. Trajectories of cholinergic pathways within the cerebral hemispheres of the human brain. Brain. 1998;121(12):2249–2257. PubMed

Liu  Q, Zhu  Z, Teipel  SJ, et al.  White matter damage in the cholinergic system contributes to cognitive impairment in subcortical vascular cognitive impairment, no dementia. Front Aging Neurosci. 2017;9(FEB):47. PubMed PMC

Cedres  N, Ferreira  D, Nemy  M, et al.  Association of cerebrovascular and Alzheimer disease biomarkers with cholinergic white matter degeneration in cognitively unimpaired individuals. Neurology. 2022;99(15):e1619–e1629. PubMed PMC

Nemy  M, Dyrba  M, Brosseron  F, et al.  Cholinergic white matter pathways along the Alzheimer’s disease continuum. Brain. 2023;146(5):2075–2088. PubMed PMC

Li  X, Li  T-Q, Andreasen  N, Wiberg  MK, Westman  E, Wahlund  L-O. The association between biomarkers in cerebrospinal fluid and structural changes in the brain in patients with Alzheimer’s disease. J Intern Med. 2014;275(4):418–427. PubMed

Li  X, Westman  E, Ståhlbom  AK, et al.  White matter changes in familial Alzheimer’s disease. J Intern Med. 2015;278(2):211–218. PubMed

Acosta-Cabronero  J, Williams  GB, Pengas  G, Nestor  PJ. Absolute diffusivities define the landscape of white matter degeneration in Alzheimer’s disease. Brain. 2010;133(Pt 2):529–539. PubMed

Mårtensson  G, Ferreira  D, Cavallin  L, et al.  AVRA: Automatic visual ratings of atrophy from MRI images using recurrent convolutional neural networks. Neuroimage Clin. 2019;23:101872. PubMed PMC

Ferreira  D, Cavallin  L, Larsson  EM, et al.  Practical cut-offs for visual rating scales of medial temporal, frontal and posterior atrophy in Alzheimer’s disease and mild cognitive impairment. J Intern Med. 2015;278(3):277–290. PubMed

Alcolea  D, Pegueroles  J, Muñoz  L, et al.  Agreement of amyloid PET and CSF biomarkers for Alzheimer’s disease on Lumipulse. Ann Clin Transl Neurol. 2019;6(9):1815–1824. PubMed PMC

Barber  R, Ballard  C, McKeith  IG, Gholkar  A, O’Brien  JT. MRI volumetric study of dementia with Lewy bodies: A comparison with AD and vascular dementia. Neurology. 2000;54(6):1304–1309. PubMed

Tiraboschi  P, Hansen  LA, Alford  M, et al.  Cholinergic dysfunction in diseases with Lewy bodies. Neurology. 2000;54(2):407–411. PubMed

Schumacher  J, Gunter  JL, Przybelski  SA, et al.  Dementia with Lewy bodies: Association of Alzheimer pathology with functional connectivity networks. Brain. 2021;144(10):3212–3225. PubMed PMC

Okkels  N, Horsager  J, Labrador-Espinosa  M, et al.  Severe cholinergic terminal loss in newly diagnosed dementia with Lewy bodies. Brain. 2023;146(9):3690–3704. PubMed

Charlton  RA, Schiavone  F, Barrick  TR, Morris  RG, Markus  HS. Diffusion tensor imaging detects age related white matter change over a 2 year follow-up which is associated with working memory decline. J Neurol Neurosurg Psychiatry. 2010;81(1):13–19. PubMed

Sullivan  EV, Pfefferbaum  A. Diffusion tensor imaging and aging. Neurosci Biobehav Rev. 2006;30(6):749–761. PubMed

Teipel  SJ, Meindl  T, Wagner  M, et al.  Longitudinal changes in fiber tract integrity in healthy aging and mild cognitive impairment: A DTI follow-up study. J Alzheimers Dis. 2010;22(2):507–522. PubMed

Iizuka  T, Iizuka  R, Kameyama  M. Cingulate island sign temporally changes in dementia with Lewy bodies. Sci Rep. 2017;7(1):14745. PubMed PMC

Minoshima  S, Foster  NL, Sima  AAF, Frey  KA, Albin  RL, Kuhl  DE. Alzheimer’s disease versus dementia with Lewy bodies: Cerebral metabolic distinction with autopsy confirmation. Ann Neurol. 2001;50(3):358–365. PubMed

Huang  S-H, Chang  C-C, Lui  C-C, et al.  Cortical metabolic and nigrostriatal abnormalities associated with clinical stage-specific dementia with Lewy bodies. Clin Nucl Med. 2015;40(1):26–31. PubMed

Patterson  L, Firbank  MJ, Colloby  SJ, Attems  J, Thomas  AJ, Morris  CM. Neuropathological changes in dementia with Lewy bodies and the cingulate island sign. J Neuropathol Exp Neurol. 2019;78(8):717–724. PubMed PMC

Okkels  N, Grothe  MJ, Taylor  J-P, et al.  Cholinergic changes in Lewy body disease: Implications for presentation, progression and subtypes. Brain. 2024;147(7):2308–2324. PubMed

Debette  S, Markus  HS. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: Systematic review and meta-analysis. BMJ (Online). 2010;341:c3666. PubMed PMC

Prins  ND, Scheltens  P. White matter hyperintensities, cognitive impairment and dementia: An update. Nat Rev Neurol. 2015;11(3):157–165. PubMed

The Ronald and Nancy Reagan Research Institute of the Alzheimer’s Association and National Institute on Aging Working Group . Consensus report of the working group on: “molecular and biochemical markers of Alzheimer’s disease”. Neurobiol Aging. 1998;19(2):109–116. PubMed

Valdés Hernández  MDC, Morris  Z, Dickie  DA, et al.  Close correlation between quantitative and qualitative assessments of white matter lesions. Neuroepidemiology. 2012;40(1):13–22. PubMed

Rennie  A, Ekman  U, Shams  S, et al.  Cerebrovascular and Alzheimer’s disease biomarkers in dementia with Lewy bodies and other dementias. Brain Commun.  2024;6:fcae290. PubMed PMC

Inguanzo  A, Poulakis  K, Mohanty  R, et al.  MRI data-driven clustering reveals different subtypes of Dementia with Lewy bodies. NPJ Parkinsons Dis. 2023;9(1):5. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...