- MeSH
- Acidosis metabolism MeSH
- Adenine Nucleotides chemistry metabolism MeSH
- Adenosine Triphosphate biosynthesis MeSH
- Glycolysis physiology MeSH
- Ions metabolism MeSH
- Myocardial Ischemia * metabolism MeSH
- Humans MeSH
- Mitochondrial Transmembrane Permeability-Driven Necrosis physiology MeSH
- Nitric Oxide chemistry metabolism MeSH
- Oxidative Stress physiology MeSH
- Ischemic Preconditioning MeSH
- Myocardial Reperfusion Injury * etiology metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Review MeSH
The identification and quantification of mitochondrial effects of novel antipsychotics (brexpiprazole, cariprazine, loxapine, and lurasidone) were studied in vitro in pig brain mitochondria. Selected parameters of mitochondrial metabolism, electron transport chain (ETC) complexes, citrate synthase (CS), malate dehydrogenase (MDH), monoamine oxidase (MAO), mitochondrial respiration, and total ATP and reactive oxygen species (ROS) production were evaluated and associated with possible adverse effects of drugs. All tested antipsychotics decreased the ETC activities (except for complex IV, which increased in activity after brexpiprazole and loxapine addition). Both complex I- and complex II-linked respiration were dose-dependently inhibited, and significant correlations were found between complex I-linked respiration and both complex I activity (positive correlation) and complex IV activity (negative correlation). All drugs significantly decreased mitochondrial ATP production at higher concentrations. Hydrogen peroxide production was significantly increased at 10 μM brexpiprazole and lurasidone and at 100 μM cariprazine and loxapine. All antipsychotics acted as partial inhibitors of MAO-A, brexpiprazole and loxapine partially inhibited MAO-B. Based on our results, novel antipsychotics probably lacked oxygen uncoupling properties. The mitochondrial effects of novel antipsychotics might contribute on their adverse effects, which are mostly related to decreased ATP production and increased ROS production, while MAO-A inhibition might contribute to their antidepressant effect, and brexpiprazole- and loxapine-induced MAO-B inhibition might likely promote neuroplasticity and neuroprotection. The assessment of drug-induced mitochondrial dysfunctions is important in development of new drugs as well as in the understanding of molecular mechanism of adverse or side drug effects.
- MeSH
- Adenosine Triphosphate biosynthesis MeSH
- Antipsychotic Agents classification pharmacology MeSH
- Quinolones pharmacology MeSH
- Electron Transport Chain Complex Proteins drug effects MeSH
- Energy Metabolism drug effects MeSH
- Monoamine Oxidase Inhibitors pharmacology MeSH
- Loxapine pharmacology MeSH
- Lurasidone Hydrochloride pharmacology MeSH
- Mitochondria drug effects metabolism MeSH
- Hydrogen Peroxide metabolism MeSH
- Piperazines pharmacology MeSH
- Swine MeSH
- Reactive Oxygen Species metabolism MeSH
- Receptors, Neurotransmitter drug effects MeSH
- Oxygen Consumption drug effects MeSH
- Thiophenes pharmacology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
Mitochondrial metabolic remodeling is a hallmark of the Trypanosoma brucei digenetic life cycle because the insect stage utilizes a cost-effective oxidative phosphorylation (OxPhos) to generate ATP, while bloodstream cells switch to aerobic glycolysis. Due to difficulties in acquiring enough parasites from the tsetse fly vector, the dynamics of the parasite's metabolic rewiring in the vector have remained obscure. Here, we took advantage of in vitro-induced differentiation to follow changes at the RNA, protein, and metabolite levels. This multi-omics and cell-based profiling showed an immediate redirection of electron flow from the cytochrome-mediated pathway to an alternative oxidase (AOX), an increase in proline consumption, elevated activity of complex II, and certain tricarboxylic acid (TCA) cycle enzymes, which led to mitochondrial membrane hyperpolarization and increased reactive oxygen species (ROS) levels. Interestingly, these ROS molecules appear to act as signaling molecules driving developmental progression because ectopic expression of catalase, a ROS scavenger, halted the in vitro-induced differentiation. Our results provide insights into the mechanisms of the parasite's mitochondrial rewiring and reinforce the emerging concept that mitochondria act as signaling organelles through release of ROS to drive cellular differentiation.
- MeSH
- Adenosine Triphosphate biosynthesis MeSH
- Cell Differentiation drug effects MeSH
- Cell Respiration drug effects MeSH
- Cell Line MeSH
- Electrons MeSH
- Glucose pharmacology MeSH
- Membrane Potential, Mitochondrial drug effects MeSH
- Metabolic Networks and Pathways drug effects MeSH
- Metabolomics * MeSH
- Mitochondrial Proteins metabolism MeSH
- Mitochondria drug effects metabolism MeSH
- Oxidation-Reduction MeSH
- Oxidoreductases metabolism MeSH
- Proline metabolism MeSH
- Proteome metabolism MeSH
- Protozoan Proteins metabolism MeSH
- Reactive Oxygen Species metabolism MeSH
- Plant Proteins metabolism MeSH
- Signal Transduction MeSH
- Transcriptome genetics MeSH
- Electron Transport drug effects MeSH
- Trypanosoma brucei brucei drug effects genetics growth & development metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Although the modulation of host physiology has been interpreted as an essential process supporting baculovirus propagation, the requirement of energy supply for host antivirus reactions could not be ruled out. Our present study showed that metabolic induction upon AcMNPV (budded virus) infection of Bombyx mori stimulated virus clearance and production of the antivirus protein, gloverin. In addition, we demonstrated that adenosine receptor signaling (AdoR) played an important role in regulating such metabolic reprogramming upon baculovirus infection. By using a second lepidopteran model, Spodoptera frugiperda Sf-21 cells, we demonstrated that the glycolytic induction regulated by adenosine signaling was a conservative mechanism modulating the permissiveness of baculovirus infection. Another interesting finding in our present study is that both BmNPV and AcMNPV infection cause metabolic activation, but it appears that BmNPV infection moderates the level of ATP production, which is in contrast to a dramatic increase upon AcMNPV infection. We identified potential AdoR miRNAs induced by BmNPV infection and concluded that BmNPV may attempt to minimize metabolic activation by suppressing adenosine signaling and further decreasing the host's anti-baculovirus response. Our present study shows that activation of energy synthesis by adenosine signaling upon baculovirus infection is a host physiological response that is essential for supporting the innate immune response against infection.
- MeSH
- Adenosine metabolism MeSH
- Adenosine Triphosphate biosynthesis MeSH
- Bombyx metabolism virology MeSH
- Deoxyglucose pharmacology MeSH
- Energy Metabolism MeSH
- Glycolysis drug effects genetics MeSH
- Insect Proteins metabolism MeSH
- DNA Virus Infections metabolism virology MeSH
- Host-Pathogen Interactions immunology MeSH
- Intercellular Signaling Peptides and Proteins metabolism MeSH
- Nucleopolyhedroviruses physiology MeSH
- Receptors, Purinergic P1 genetics metabolism MeSH
- Virus Replication drug effects MeSH
- Sf9 Cells MeSH
- Spodoptera MeSH
- Transfection MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Swim-up is a sperm purification method that is being used daily in andrology labs around the world as a simple step for in vitro sperm selection. This method accumulates the most motile sperm in the upper fraction and leaves sperm with low or no motility in the lower fraction. However, the underlying reasons are not fully understood. In this article, we compare metabolic rate, motility and sperm tail length of bovine sperm cells of the upper and lower fraction. The metabolic assay platform reveals oxygen consumption rates and extracellular acidification rates simultaneously and thereby delivers the metabolic rates in real time. Our study confirms that the upper fraction of bull sperm has not only improved motility compared to the cells in the lower fraction but also shows higher metabolic rates and longer flagella. This pattern was consistent across media of two different levels of viscosity. We conclude that the motility-based separation of the swim-up technique is also reflected in underlying metabolic differences. Metabolic assays could serve as additional or alternative, label-free method to evaluate sperm quality.
- MeSH
- Adenosine Triphosphate biosynthesis MeSH
- Basal Metabolism * MeSH
- Sperm Tail metabolism MeSH
- Breeding MeSH
- Flagella metabolism MeSH
- Kinetics MeSH
- Sperm Motility physiology MeSH
- Oxidative Phosphorylation MeSH
- Cattle MeSH
- Spermatozoa metabolism MeSH
- Oxygen Consumption MeSH
- Viscosity MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Cattle MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Ritonavir (RIT) is a widely used antiviral drug that acts as an HIV protease inhibitor with emerging potential in anticancer therapies. RIT causes inhibition of P-glycoprotein, which plays an important role in multidrug resistance (MDR) in cancer cells when overexpressed. Moreover, RIT causes mitochondrial dysfunction, leading to decreased ATP production and reduction of caveolin I expression, which can affect cell migration and tumor progression. To increase its direct antitumor activity, decrease severe side effects induced by the use of free RIT and improve its pharmacokinetics, ritonavir 5-methyl-4-oxohexanoate (RTV) was synthesized and conjugated to a tumor-targeted polymer carrier based on a N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer. Here we demonstrated that polymer-bound RTV enhanced the internalization of polymer-RTV conjugates, differing in RTV content from 4 to 15 wt%, in HeLa cancer cells compared with polymer without RTV. The most efficient influx and internalization properties were determined for the polymer conjugate bearing 11 wt% of RTV. This conjugate was internalized by cells using both caveolin- and clathrin-dependent endocytic pathways in contrast to the RTV-free polymer, which was preferentially internalized only by clathrin-mediated endocytosis. Moreover, we found the co-localization of the RTV-conjugate with mitochondria and a significant decrease of ATP production in treated cells. Thus, the impact on mitochondrial mechanism can influence the function of ATP-dependent P-glycoprotein and also the cell viability of MDR cancer cells. Overall, this study demonstrated that the polymer-RTV conjugate is a promising polymer-based nanotherapeutic, suitable for antitumor combination therapy with other anticancer drugs and a potential mitochondrial drug delivery system.
- MeSH
- Adenosine Triphosphate biosynthesis MeSH
- Drug Resistance, Neoplasm drug effects MeSH
- Endocytosis drug effects MeSH
- HeLa Cells MeSH
- Caveolin 1 biosynthesis genetics MeSH
- Clathrin pharmacology MeSH
- Hydrogen-Ion Concentration MeSH
- Humans MeSH
- Methacrylates chemistry MeSH
- Nanostructures chemistry MeSH
- ATP Binding Cassette Transporter, Subfamily B, Member 1 drug effects metabolism MeSH
- Polymers MeSH
- Antineoplastic Agents administration & dosage chemistry MeSH
- Ritonavir administration & dosage analogs & derivatives chemistry MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
We have investigated the effect of lipid composition on interactions between cytochrome bo 3 and ATP-synthase, and the ATP-synthesis activity driven by proton pumping. The two proteins were labeled by fluorescent probes and co-reconstituted in large (d ≅ 100 nm) or giant (d ≅ 10 µm) unilamellar lipid vesicles. Interactions were investigated using fluorescence correlation/cross-correlation spectroscopy and the activity was determined by measuring ATP production, driven by electron-proton transfer, as a function of time. We found that conditions that promoted direct interactions between the two proteins in the membrane (higher fraction DOPC lipids or labeling by hydrophobic molecules) correlated with an increased activity. These data indicate that the ATP-synthesis rate increases with decreasing distance between cytochrome bo 3 and the ATP-synthase, and involves proton transfer along the membrane surface. The maximum distance for lateral proton transfer along the surface was found to be ~80 nm.
- MeSH
- Adenosine Triphosphate biosynthesis MeSH
- Enzyme Activation MeSH
- Biochemical Phenomena MeSH
- Models, Biological MeSH
- Lipid Bilayers chemistry metabolism MeSH
- Proton-Translocating ATPases chemistry metabolism MeSH
- Proton Pumps chemistry metabolism MeSH
- Protein Transport MeSH
- Protein Binding MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The mitochondrial network provides the central cell's energetic and regulatory unit, which besides ATP and metabolite production participates in cellular signaling through regulated reactive oxygen species (ROS) production and various protein/ion fluxes. The inner membrane forms extensive folds, called cristae, i.e. cavities enfolded from and situated perpendicularly to its inner boundary membrane portion, which encompasses an inner cylinder within the outer membrane tubule. Mitochondrial cristae ultramorphology reflects various metabolic, physiological or pathological states. Since the mitochondrion is typically a predominant superoxide source and generated ROS also serve for the creation of information redox signals, we review known relationships between ROS generation within the respiratory chain complexes of cristae and cristae morphology. Notably, it is emphasized that cristae shape is governed by ATP-synthase dimers, MICOS complexes, OPA1 isoforms and the umbrella of their regulation, and also dependent on local protonmotive force (electrical potential component) in cristae. Cristae are also affected by redox-sensitive kinases/phosphatases or p66SHC. ATP-synthase dimers decrease in the inflated intracristal space, diminishing pH and hypothetically having minimal superoxide formation. Matrix-released signaling superoxide/H2O2 is predominantly integrated along mitochondrial tubules, whereas the diffusion of intracristal signaling ROS species is controlled by crista junctions, the widening of which enables specific retrograde redox signaling such as during hypoxic cell adaptation. Other physiological cases of H2O2 release from the mitochondrion include the modulation of insulin release in pancreatic β-cells, enhancement of insulin signaling in peripheral tissues, signaling by T-cell receptors, retrograde signaling during the cell cycle and cell differentiation, specifically that of adipocytes.
- MeSH
- Adenosine Triphosphate biosynthesis MeSH
- Humans MeSH
- Mitochondrial Membranes metabolism MeSH
- Mitochondria metabolism MeSH
- Signal Transduction * MeSH
- Superoxides metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
The relationship of the inner mitochondrial membrane (IMM) cristae structure and intracristal space (ICS) to oxidative phosphorylation (oxphos) is not well understood. Mitofilin (subunit Mic60) of the mitochondrial contact site and cristae organizing system (MICOS) IMM complex is attached to the outer membrane (OMM) via the sorting and assembly machinery/topogenesis of mitochondrial outer membrane β-barrel proteins (SAM/TOB) complex and controls the shape of the cristae. ATP synthase dimers determine sharp cristae edges, whereas trimeric OPA1 tightens ICS outlets. Metabolism is altered during hypoxia, and we therefore studied cristae morphology in HepG2 cells adapted to 5% oxygen for 72 h. Three dimensional (3D), super-resolution biplane fluorescence photoactivation localization microscopy with Eos-conjugated, ICS-located lactamase-β indicated hypoxic ICS expansion with an unchanged OMM (visualized by Eos-mitochondrial fission protein-1). 3D direct stochastic optical reconstruction microscopy immunocytochemistry revealed foci of clustered mitofilin (but not MICOS subunit Mic19) in contrast to its even normoxic distribution. Mitofilin mRNA and protein decreased by ∼20%. ATP synthase dimers vs monomers and state-3/state-4 respiration ratios were lower during hypoxia. Electron microscopy confirmed ICS expansion (maximum in glycolytic cells), which was absent in reduced or OMM-detached cristae of OPA1- and mitofilin-silenced cells, respectively. Hypoxic adaptation is reported as rounding sharp cristae edges and expanding cristae width (ICS) by partial mitofilin/Mic60 down-regulation. Mitofilin-depleted MICOS detaches from SAM while remaining MICOS with mitofilin redistributes toward higher interdistances. This phenomenon causes partial oxphos dormancy in glycolytic cells via disruption of ATP synthase dimers.-Plecitá-Hlavatá, L., Engstová, H., Alán, L., Špaček, T., Dlasková, A., Smolková, K., Špačková, J., Tauber, J., Strádalová, V., Malínský, J., Lessard, M., Bewersdorf, J., Ježek, P. Hypoxic HepG2 cell adaptation decreases ATP synthase dimers and ATP production in inflated cristae by mitofilin down-regulation concomitant to MICOS clustering.
- MeSH
- Adenosine Triphosphate biosynthesis MeSH
- ATP Synthetase Complexes metabolism MeSH
- Hep G2 Cells MeSH
- Down-Regulation MeSH
- Adaptation, Physiological physiology MeSH
- Protein Interaction Domains and Motifs MeSH
- Oxygen * MeSH
- Humans MeSH
- Mitochondrial Dynamics physiology MeSH
- Mitochondrial Proteins genetics metabolism MeSH
- Mitochondria physiology MeSH
- Multiprotein Complexes physiology MeSH
- Protein Subunits MeSH
- Gene Expression Regulation physiology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH