• Je něco špatně v tomto záznamu ?

Germline replications and somatic mutation accumulation are independent of vegetative life span in Arabidopsis

JM. Watson, A. Platzer, A. Kazda, S. Akimcheva, S. Valuchova, V. Nizhynska, M. Nordborg, K. Riha,

. 2016 ; 113 (43) : 12226-12231. [pub] 20161011

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc18010968
E-zdroje Online Plný text

NLK Free Medical Journals od 1915 do Před 6 měsíci
Freely Accessible Science Journals od 1915 do Před 6 měsíci
PubMed Central od 1915 do Před 6 měsíci
Europe PubMed Central od 1915 do Před 6 měsíci
Open Access Digital Library od 1915-01-15
Open Access Digital Library od 1915-01-01

In plants, gametogenesis occurs late in development, and somatic mutations can therefore be transmitted to the next generation. Longer periods of growth are believed to result in an increase in the number of cell divisions before gametogenesis, with a concomitant increase in mutations arising due to replication errors. However, there is little experimental evidence addressing how many cell divisions occur before gametogenesis. Here, we measured loss of telomeric DNA and accumulation of replication errors in Arabidopsis with short and long life spans to determine the number of replications in lineages leading to gametes. Surprisingly, the number of cell divisions within the gamete lineage is nearly independent of both life span and vegetative growth. One consequence of the relatively stable number of replications per generation is that older plants may not pass along more somatically acquired mutations to their offspring. We confirmed this hypothesis by genomic sequencing of progeny from young and old plants. This independence can be achieved by hierarchical arrangement of cell divisions in plant meristems where vegetative growth is primarily accomplished by expansion of cells in rapidly dividing meristematic zones, which are only rarely refreshed by occasional divisions of more quiescent cells. We support this model by 5-ethynyl-2'-deoxyuridine retention experiments in shoot and root apical meristems. These results suggest that stem-cell organization has independently evolved in plants and animals to minimize mutations by limiting DNA replication.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18010968
003      
CZ-PrNML
005      
20180404142436.0
007      
ta
008      
180404s2016 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1073/pnas.1609686113 $2 doi
035    __
$a (PubMed)27729523
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Watson, J Matthew $u Gregor Mendel Institute of Plant Molecular Biology, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria.
245    10
$a Germline replications and somatic mutation accumulation are independent of vegetative life span in Arabidopsis / $c JM. Watson, A. Platzer, A. Kazda, S. Akimcheva, S. Valuchova, V. Nizhynska, M. Nordborg, K. Riha,
520    9_
$a In plants, gametogenesis occurs late in development, and somatic mutations can therefore be transmitted to the next generation. Longer periods of growth are believed to result in an increase in the number of cell divisions before gametogenesis, with a concomitant increase in mutations arising due to replication errors. However, there is little experimental evidence addressing how many cell divisions occur before gametogenesis. Here, we measured loss of telomeric DNA and accumulation of replication errors in Arabidopsis with short and long life spans to determine the number of replications in lineages leading to gametes. Surprisingly, the number of cell divisions within the gamete lineage is nearly independent of both life span and vegetative growth. One consequence of the relatively stable number of replications per generation is that older plants may not pass along more somatically acquired mutations to their offspring. We confirmed this hypothesis by genomic sequencing of progeny from young and old plants. This independence can be achieved by hierarchical arrangement of cell divisions in plant meristems where vegetative growth is primarily accomplished by expansion of cells in rapidly dividing meristematic zones, which are only rarely refreshed by occasional divisions of more quiescent cells. We support this model by 5-ethynyl-2'-deoxyuridine retention experiments in shoot and root apical meristems. These results suggest that stem-cell organization has independently evolved in plants and animals to minimize mutations by limiting DNA replication.
650    _2
$a Arabidopsis $x genetika $x růst a vývoj $7 D017360
650    _2
$a replikace DNA $x genetika $7 D004261
650    _2
$a diploidie $7 D004171
650    _2
$a regulace genové exprese u rostlin $7 D018506
650    _2
$a genom rostlinný $x genetika $7 D018745
650    _2
$a zárodečné buňky $x růst a vývoj $7 D005854
650    _2
$a meristém $x genetika $x růst a vývoj $7 D018519
650    _2
$a mutace $x genetika $7 D009154
650    _2
$a akumulace mutací $7 D000067552
650    _2
$a rostlinné buňky $7 D059828
650    _2
$a kořeny rostlin $x genetika $x růst a vývoj $7 D018517
650    _2
$a výhonky rostlin $x genetika $x růst a vývoj $7 D018520
650    _2
$a stonky rostlin $x genetika $x růst a vývoj $7 D018547
650    _2
$a sekvenční analýza DNA $7 D017422
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Platzer, Alexander $u Gregor Mendel Institute of Plant Molecular Biology, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria.
700    1_
$a Kazda, Anita $u Gregor Mendel Institute of Plant Molecular Biology, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria.
700    1_
$a Akimcheva, Svetlana $u Gregor Mendel Institute of Plant Molecular Biology, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria.
700    1_
$a Valuchova, Sona $u Central European Institute of Technology, Masaryk University, 612 65 Brno, Czech Republic.
700    1_
$a Nizhynska, Viktoria $u Gregor Mendel Institute of Plant Molecular Biology, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria.
700    1_
$a Nordborg, Magnus $u Gregor Mendel Institute of Plant Molecular Biology, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria.
700    1_
$a Riha, Karel $u Gregor Mendel Institute of Plant Molecular Biology, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria; Central European Institute of Technology, Masaryk University, 612 65 Brno, Czech Republic karel.riha@ceitec.muni.cz.
773    0_
$w MED00010472 $t Proceedings of the National Academy of Sciences of the United States of America $x 1091-6490 $g Roč. 113, č. 43 (2016), s. 12226-12231
856    41
$u https://pubmed.ncbi.nlm.nih.gov/27729523 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20180404 $b ABA008
991    __
$a 20180404142516 $b ABA008
999    __
$a ok $b bmc $g 1288453 $s 1007780
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 113 $c 43 $d 12226-12231 $e 20161011 $i 1091-6490 $m Proceedings of the National Academy of Sciences of the United States of America $n Proc Natl Acad Sci U S A $x MED00010472
LZP    __
$a Pubmed-20180404

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...