• Je něco špatně v tomto záznamu ?

Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in Arabidopsis

S. Porco, A. Pěnčík, A. Rashed, U. Voß, R. Casanova-Sáez, A. Bishopp, A. Golebiowska, R. Bhosale, R. Swarup, K. Swarup, P. Peňáková, O. Novák, P. Staswick, P. Hedden, AL. Phillips, K. Vissenberg, MJ. Bennett, K. Ljung,

. 2016 ; 113 (39) : 11016-21. [pub] 20160920

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc18011014
E-zdroje Online Plný text

NLK Free Medical Journals od 1915 do Před 6 měsíci
Freely Accessible Science Journals od 1915 do Před 6 měsíci
PubMed Central od 1915 do Před 6 měsíci
Europe PubMed Central od 1915 do Před 6 měsíci
Open Access Digital Library od 1915-01-15
Open Access Digital Library od 1915-01-01

Auxin represents a key signal in plants, regulating almost every aspect of their growth and development. Major breakthroughs have been made dissecting the molecular basis of auxin transport, perception, and response. In contrast, how plants control the metabolism and homeostasis of the major form of auxin in plants, indole-3-acetic acid (IAA), remains unclear. In this paper, we initially describe the function of the Arabidopsis thaliana gene DIOXYGENASE FOR AUXIN OXIDATION 1 (AtDAO1). Transcriptional and translational reporter lines revealed that AtDAO1 encodes a highly root-expressed, cytoplasmically localized IAA oxidase. Stable isotope-labeled IAA feeding studies of loss and gain of function AtDAO1 lines showed that this oxidase represents the major regulator of auxin degradation to 2-oxoindole-3-acetic acid (oxIAA) in Arabidopsis Surprisingly, AtDAO1 loss and gain of function lines exhibited relatively subtle auxin-related phenotypes, such as altered root hair length. Metabolite profiling of mutant lines revealed that disrupting AtDAO1 regulation resulted in major changes in steady-state levels of oxIAA and IAA conjugates but not IAA. Hence, IAA conjugation and catabolism seem to regulate auxin levels in Arabidopsis in a highly redundant manner. We observed that transcripts of AtDOA1 IAA oxidase and GH3 IAA-conjugating enzymes are auxin-inducible, providing a molecular basis for their observed functional redundancy. We conclude that the AtDAO1 gene plays a key role regulating auxin homeostasis in Arabidopsis, acting in concert with GH3 genes, to maintain auxin concentration at optimal levels for plant growth and development.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18011014
003      
CZ-PrNML
005      
20180404142456.0
007      
ta
008      
180404s2016 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1073/pnas.1604375113 $2 doi
035    __
$a (PubMed)27651491
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Porco, Silvana $u Centre for Plant Integrative Biology, Plant and Crop Science Division, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom;
245    10
$a Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in Arabidopsis / $c S. Porco, A. Pěnčík, A. Rashed, U. Voß, R. Casanova-Sáez, A. Bishopp, A. Golebiowska, R. Bhosale, R. Swarup, K. Swarup, P. Peňáková, O. Novák, P. Staswick, P. Hedden, AL. Phillips, K. Vissenberg, MJ. Bennett, K. Ljung,
520    9_
$a Auxin represents a key signal in plants, regulating almost every aspect of their growth and development. Major breakthroughs have been made dissecting the molecular basis of auxin transport, perception, and response. In contrast, how plants control the metabolism and homeostasis of the major form of auxin in plants, indole-3-acetic acid (IAA), remains unclear. In this paper, we initially describe the function of the Arabidopsis thaliana gene DIOXYGENASE FOR AUXIN OXIDATION 1 (AtDAO1). Transcriptional and translational reporter lines revealed that AtDAO1 encodes a highly root-expressed, cytoplasmically localized IAA oxidase. Stable isotope-labeled IAA feeding studies of loss and gain of function AtDAO1 lines showed that this oxidase represents the major regulator of auxin degradation to 2-oxoindole-3-acetic acid (oxIAA) in Arabidopsis Surprisingly, AtDAO1 loss and gain of function lines exhibited relatively subtle auxin-related phenotypes, such as altered root hair length. Metabolite profiling of mutant lines revealed that disrupting AtDAO1 regulation resulted in major changes in steady-state levels of oxIAA and IAA conjugates but not IAA. Hence, IAA conjugation and catabolism seem to regulate auxin levels in Arabidopsis in a highly redundant manner. We observed that transcripts of AtDOA1 IAA oxidase and GH3 IAA-conjugating enzymes are auxin-inducible, providing a molecular basis for their observed functional redundancy. We conclude that the AtDAO1 gene plays a key role regulating auxin homeostasis in Arabidopsis, acting in concert with GH3 genes, to maintain auxin concentration at optimal levels for plant growth and development.
650    _2
$a sekvence aminokyselin $7 D000595
650    _2
$a Arabidopsis $x enzymologie $x genetika $7 D017360
650    _2
$a proteiny huseníčku $x chemie $x genetika $x metabolismus $7 D029681
650    _2
$a dioxygenasy $x metabolismus $7 D049308
650    _2
$a regulace genové exprese u rostlin $7 D018506
650    12
$a rostlinné geny $7 D017343
650    _2
$a zelené fluorescenční proteiny $x metabolismus $7 D049452
650    12
$a homeostáza $7 D006706
650    _2
$a kyseliny indoloctové $x metabolismus $7 D007210
650    _2
$a metabolomika $7 D055432
650    _2
$a biologické modely $7 D008954
650    _2
$a mutace $x genetika $7 D009154
650    _2
$a oxidace-redukce $7 D010084
650    _2
$a fenotyp $7 D010641
650    _2
$a fylogeneze $7 D010802
650    _2
$a kořeny rostlin $x metabolismus $7 D018517
650    _2
$a výhonky rostlin $x metabolismus $7 D018520
650    _2
$a promotorové oblasti (genetika) $x genetika $7 D011401
650    _2
$a messenger RNA $x genetika $x metabolismus $7 D012333
650    _2
$a semenáček $x metabolismus $7 D036226
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Pěnčík, Aleš $u Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umea, Sweden; Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany Academy of Sciences of the Czech Republic (AS CR), CZ-78371 Olomouc, Czech Republic; Faculty of Science, Palacký University, CZ-78371 Olomouc, Czech Republic;
700    1_
$a Rashed, Afaf $u Centre for Plant Integrative Biology, Plant and Crop Science Division, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom;
700    1_
$a Voß, Ute $u Centre for Plant Integrative Biology, Plant and Crop Science Division, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom;
700    1_
$a Casanova-Sáez, Rubén $u Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umea, Sweden;
700    1_
$a Bishopp, Anthony $u Centre for Plant Integrative Biology, Plant and Crop Science Division, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom;
700    1_
$a Golebiowska, Agata $u Centre for Plant Integrative Biology, Plant and Crop Science Division, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom; Integrated Molecular Plant Physiology Research, Biology Department, Antwerp University, 2020 Antwerp, Belgium;
700    1_
$a Bhosale, Rahul $u Centre for Plant Integrative Biology, Plant and Crop Science Division, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom;
700    1_
$a Swarup, Ranjan $u Centre for Plant Integrative Biology, Plant and Crop Science Division, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom;
700    1_
$a Swarup, Kamal $u Centre for Plant Integrative Biology, Plant and Crop Science Division, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom;
700    1_
$a Peňáková, Pavlína $u Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany Academy of Sciences of the Czech Republic (AS CR), CZ-78371 Olomouc, Czech Republic; Faculty of Science, Palacký University, CZ-78371 Olomouc, Czech Republic;
700    1_
$a Novák, Ondřej $u Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umea, Sweden; Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany Academy of Sciences of the Czech Republic (AS CR), CZ-78371 Olomouc, Czech Republic; Faculty of Science, Palacký University, CZ-78371 Olomouc, Czech Republic;
700    1_
$a Staswick, Paul $u Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583-0915;
700    1_
$a Hedden, Peter $u Department of Plant Biology and Crop Science, Rothamsted Research, Hertfordshire AL5 2JQ, United Kingdom.
700    1_
$a Phillips, Andrew L $u Department of Plant Biology and Crop Science, Rothamsted Research, Hertfordshire AL5 2JQ, United Kingdom.
700    1_
$a Vissenberg, Kris $u Integrated Molecular Plant Physiology Research, Biology Department, Antwerp University, 2020 Antwerp, Belgium;
700    1_
$a Bennett, Malcolm J $u Centre for Plant Integrative Biology, Plant and Crop Science Division, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom; malcolm.bennett@nottingham.ac.uk karin.ljung@slu.se.
700    1_
$a Ljung, Karin $u Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umea, Sweden; malcolm.bennett@nottingham.ac.uk karin.ljung@slu.se.
773    0_
$w MED00010472 $t Proceedings of the National Academy of Sciences of the United States of America $x 1091-6490 $g Roč. 113, č. 39 (2016), s. 11016-21
856    41
$u https://pubmed.ncbi.nlm.nih.gov/27651491 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20180404 $b ABA008
991    __
$a 20180404142535 $b ABA008
999    __
$a ok $b bmc $g 1288499 $s 1007826
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 113 $c 39 $d 11016-21 $e 20160920 $i 1091-6490 $m Proceedings of the National Academy of Sciences of the United States of America $n Proc Natl Acad Sci U S A $x MED00010472
LZP    __
$a Pubmed-20180404

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...