-
Something wrong with this record ?
Atherogenic impact of lecithin-cholesterol acyltransferase and its relation to cholesterol esterification rate in HDL (FER(HDL)) and AIP [log(TG/HDL-C)] biomarkers: the butterfly effect
M. Dobiášová
Language English Country Czech Republic
Document type Journal Article, Review
NLK
Directory of Open Access Journals
from 1991
Free Medical Journals
from 1998
ProQuest Central
from 2005-01-01
Medline Complete (EBSCOhost)
from 2006-01-01
Nursing & Allied Health Database (ProQuest)
from 2005-01-01
Health & Medicine (ProQuest)
from 2005-01-01
ROAD: Directory of Open Access Scholarly Resources
from 1998
- MeSH
- Atherosclerosis blood metabolism MeSH
- Biomarkers metabolism MeSH
- Cholesterol metabolism MeSH
- Esterification MeSH
- Phosphatidylcholine-Sterol O-Acyltransferase metabolism MeSH
- Humans MeSH
- Lipoproteins, HDL metabolism MeSH
- Fatty Acids metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
The atherogenic impact and functional capacity of LCAT was studied and discussed over a half century. This review aims to clarify the key points that may affect the final decision on whether LCAT is an anti-atherogenic or atherogenic factor. There are three main processes involving the efflux of free cholesterol from peripheral cells, LCAT action in intravascular pool where cholesterol esterification rate is under the control of HDL, LDL and VLDL subpopulations, and finally the destination of newly produced cholesteryl esters either to the catabolism in liver or to a futile cycle with apoB lipoproteins. The functionality of LCAT substantially depends on its mass together with the composition of the phospholipid bilayer as well as the saturation and the length of fatty acyls and other effectors about which we know yet nothing. Over the years, LCAT puzzle has been significantly supplemented but yet not so satisfactory as to enable how to manipulate LCAT in order to prevent cardiometabolic events. It reminds the butterfly effect when only a moderate change in the process of transformation free cholesterol to cholesteryl esters may cause a crucial turn in the intended target. On the other hand, two biomarkers - FER(HDL) (fractional esterification rate in HDL) and AIP [log(TG/HDL-C)] can offer a benefit to identify the risk of cardiovascular disease (CVD). They both reflect the rate of cholesterol esterification by LCAT and the composition of lipoprotein subpopulations that controls this rate. In clinical practice, AIP can be calculated from the routine lipid profile with help of AIP calculator www.biomed.cas.cz/fgu/aip/calculator.php.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18011448
- 003
- CZ-PrNML
- 005
- 20180502083300.0
- 007
- ta
- 008
- 180405s2017 xr d f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.33549/physiolres.933621 $2 doi
- 035 __
- $a (PubMed)28471688
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xr
- 100 1_
- $a Dobiášová, Milada $u Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic $7 xx0062268
- 245 10
- $a Atherogenic impact of lecithin-cholesterol acyltransferase and its relation to cholesterol esterification rate in HDL (FER(HDL)) and AIP [log(TG/HDL-C)] biomarkers: the butterfly effect / $c M. Dobiášová
- 520 9_
- $a The atherogenic impact and functional capacity of LCAT was studied and discussed over a half century. This review aims to clarify the key points that may affect the final decision on whether LCAT is an anti-atherogenic or atherogenic factor. There are three main processes involving the efflux of free cholesterol from peripheral cells, LCAT action in intravascular pool where cholesterol esterification rate is under the control of HDL, LDL and VLDL subpopulations, and finally the destination of newly produced cholesteryl esters either to the catabolism in liver or to a futile cycle with apoB lipoproteins. The functionality of LCAT substantially depends on its mass together with the composition of the phospholipid bilayer as well as the saturation and the length of fatty acyls and other effectors about which we know yet nothing. Over the years, LCAT puzzle has been significantly supplemented but yet not so satisfactory as to enable how to manipulate LCAT in order to prevent cardiometabolic events. It reminds the butterfly effect when only a moderate change in the process of transformation free cholesterol to cholesteryl esters may cause a crucial turn in the intended target. On the other hand, two biomarkers - FER(HDL) (fractional esterification rate in HDL) and AIP [log(TG/HDL-C)] can offer a benefit to identify the risk of cardiovascular disease (CVD). They both reflect the rate of cholesterol esterification by LCAT and the composition of lipoprotein subpopulations that controls this rate. In clinical practice, AIP can be calculated from the routine lipid profile with help of AIP calculator www.biomed.cas.cz/fgu/aip/calculator.php.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a ateroskleróza $x krev $x metabolismus $7 D050197
- 650 _2
- $a biologické markery $x metabolismus $7 D015415
- 650 _2
- $a cholesterol $x metabolismus $7 D002784
- 650 _2
- $a esterifikace $7 D004951
- 650 _2
- $a mastné kyseliny $x metabolismus $7 D005227
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a lipoproteiny HDL $x metabolismus $7 D008075
- 650 _2
- $a lecitincholesterolacyltransferasa $x metabolismus $7 D007862
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a přehledy $7 D016454
- 773 0_
- $w MED00003824 $t Physiological research $x 1802-9973 $g Roč. 66, č. 2 (2017), s. 193-203
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/28471688 $y Pubmed
- 910 __
- $a ABA008 $b A 4120 $c 266 $y 4 $z 0
- 990 __
- $a 20180405 $b ABA008
- 991 __
- $a 20180425102309 $b ABA008
- 999 __
- $a ok $b bmc $g 1296227 $s 1008260
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 66 $c 2 $d 193-203 $i 1802-9973 $m Physiological research $n Physiol. Res. (Print) $x MED00003824
- LZP __
- $b NLK118 $a Pubmed-20180405