• Something wrong with this record ?

A robust vitronectin-derived peptide for the scalable long-term expansion and neuronal differentiation of human pluripotent stem cell (hPSC)-derived neural progenitor cells (hNPCs)

D. Varun, GR. Srinivasan, YH. Tsai, HJ. Kim, J. Cutts, F. Petty, R. Merkley, N. Stephanopoulos, D. Dolezalova, M. Marsala, DA. Brafman,

. 2017 ; 48 (-) : 120-130. [pub] 20161027

Language English Country Great Britain

Document type Journal Article, Research Support, Non-U.S. Gov't, Research Support, N.I.H., Extramural

Despite therapeutic advances, neurodegenerative diseases and disorders remain some of the leading causes of mortality and morbidity in the United States. Therefore, cell-based therapies to replace lost or damaged neurons and supporting cells of the central nervous system (CNS) are of great therapeutic interest. To that end, human pluripotent stem cell (hPSC) derived neural progenitor cells (hNPCs) and their neuronal derivatives could provide the cellular 'raw material' needed for regenerative medicine therapies for a variety of CNS disorders. In addition, hNPCs derived from patient-specific hPSCs could be used to elucidate the underlying mechanisms of neurodegenerative diseases and identify potential drug candidates. However, the scientific and clinical application of hNPCs requires the development of robust, defined, and scalable substrates for their long-term expansion and neuronal differentiation. In this study, we rationally designed a vitronectin-derived peptide (VDP) that served as an adhesive growth substrate for the long-term expansion of several hNPC lines. Moreover, VDP-coated surfaces allowed for the directed neuronal differentiation of hNPC at levels similar to cells differentiated on traditional extracellular matrix protein-based substrates. Overall, the ability of VDP to support the long-term expansion and directed neuronal differentiation of hNPCs will significantly advance the future translational application of these cells in treating injuries, disorders, and diseases of the CNS.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18016853
003      
CZ-PrNML
005      
20180523093403.0
007      
ta
008      
180515s2017 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.actbio.2016.10.037 $2 doi
035    __
$a (PubMed)27989923
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Varun, Divya $u School of Biological and Health Systems Engineering, Arizona State University, United States.
245    12
$a A robust vitronectin-derived peptide for the scalable long-term expansion and neuronal differentiation of human pluripotent stem cell (hPSC)-derived neural progenitor cells (hNPCs) / $c D. Varun, GR. Srinivasan, YH. Tsai, HJ. Kim, J. Cutts, F. Petty, R. Merkley, N. Stephanopoulos, D. Dolezalova, M. Marsala, DA. Brafman,
520    9_
$a Despite therapeutic advances, neurodegenerative diseases and disorders remain some of the leading causes of mortality and morbidity in the United States. Therefore, cell-based therapies to replace lost or damaged neurons and supporting cells of the central nervous system (CNS) are of great therapeutic interest. To that end, human pluripotent stem cell (hPSC) derived neural progenitor cells (hNPCs) and their neuronal derivatives could provide the cellular 'raw material' needed for regenerative medicine therapies for a variety of CNS disorders. In addition, hNPCs derived from patient-specific hPSCs could be used to elucidate the underlying mechanisms of neurodegenerative diseases and identify potential drug candidates. However, the scientific and clinical application of hNPCs requires the development of robust, defined, and scalable substrates for their long-term expansion and neuronal differentiation. In this study, we rationally designed a vitronectin-derived peptide (VDP) that served as an adhesive growth substrate for the long-term expansion of several hNPC lines. Moreover, VDP-coated surfaces allowed for the directed neuronal differentiation of hNPC at levels similar to cells differentiated on traditional extracellular matrix protein-based substrates. Overall, the ability of VDP to support the long-term expansion and directed neuronal differentiation of hNPCs will significantly advance the future translational application of these cells in treating injuries, disorders, and diseases of the CNS.
650    _2
$a zvířata $7 D000818
650    _2
$a buněčná adheze $x účinky léků $7 D002448
650    _2
$a molekuly buněčné adheze $x metabolismus $7 D015815
650    _2
$a buněčná diferenciace $x účinky léků $7 D002454
650    _2
$a proliferace buněk $x účinky léků $7 D049109
650    _2
$a biokompatibilní potahované materiály $x farmakologie $7 D020099
650    _2
$a extracelulární matrix - proteiny $x metabolismus $7 D016326
650    _2
$a lidé $7 D006801
650    _2
$a myši $7 D051379
650    _2
$a nervové kmenové buňky $x cytologie $x účinky léků $x metabolismus $7 D058953
650    _2
$a neurony $x cytologie $x účinky léků $x metabolismus $7 D009474
650    _2
$a peptidy $x farmakologie $7 D010455
650    _2
$a pluripotentní kmenové buňky $x cytologie $x účinky léků $x metabolismus $7 D039904
650    _2
$a vitronektin $x farmakologie $7 D019096
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
700    1_
$a Srinivasan, Gayathri Rajaram $u School of Biological and Health Systems Engineering, Arizona State University, United States.
700    1_
$a Tsai, Yi-Huan $u School of Biological and Health Systems Engineering, Arizona State University, United States.
700    1_
$a Kim, Hyun-Je $u School of Biological and Health Systems Engineering, Arizona State University, United States.
700    1_
$a Cutts, Joshua $u School of Biological and Health Systems Engineering, Arizona State University, United States.
700    1_
$a Petty, Francis $u School of Biological and Health Systems Engineering, Arizona State University, United States.
700    1_
$a Merkley, Ryan $u School of Molecular Sciences and Biodesign Institute Center for Molecular Design and Biomimetics, Arizona State University, United States.
700    1_
$a Stephanopoulos, Nicholas $u School of Molecular Sciences and Biodesign Institute Center for Molecular Design and Biomimetics, Arizona State University, United States.
700    1_
$a Dolezalova, Dasa $u Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
700    1_
$a Marsala, Martin $u Department of Anesthesiology, University of California - San Diego, United States.
700    1_
$a Brafman, David A $u School of Biological and Health Systems Engineering, Arizona State University, United States. Electronic address: david.brafman@asu.edu.
773    0_
$w MED00008542 $t Acta biomaterialia $x 1878-7568 $g Roč. 48, č. - (2017), s. 120-130
856    41
$u https://pubmed.ncbi.nlm.nih.gov/27989923 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20180515 $b ABA008
991    __
$a 20180523093548 $b ABA008
999    __
$a ok $b bmc $g 1300477 $s 1013693
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2017 $b 48 $c - $d 120-130 $e 20161027 $i 1878-7568 $m Acta biomaterialia $n Acta Biomater $x MED00008542
LZP    __
$a Pubmed-20180515

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...