-
Je něco špatně v tomto záznamu ?
Awakening of a Dormant Cyanobacterium from Nitrogen Chlorosis Reveals a Genetically Determined Program
A. Klotz, J. Georg, L. Bučinská, S. Watanabe, V. Reimann, W. Januszewski, R. Sobotka, D. Jendrossek, WR. Hess, K. Forchhammer,
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články
NLK
Cell Press Free Archives
od 1995-01-01 do Před 1 rokem
Free Medical Journals
od 1995 do Před 1 rokem
- MeSH
- bakteriální RNA metabolismus MeSH
- dusík metabolismus MeSH
- nekódující RNA metabolismus MeSH
- regulace genové exprese u bakterií * MeSH
- Synechocystis genetika fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
The molecular and physiological mechanisms involved in the transition of microbial cells from a resting state to the active vegetative state are critically relevant for solving problems in fields ranging from microbial ecology to infection microbiology. Cyanobacteria that cannot fix nitrogen are able to survive prolonged periods of nitrogen starvation as chlorotic cells in a dormant state. When provided with a usable nitrogen source, these cells re-green within 48 hr and return to vegetative growth. Here we investigated the resuscitation of chlorotic Synechocystis sp. PCC 6803 cells at the physiological and molecular levels with the aim of understanding the awakening process of a dormant bacterium. Almost immediately upon nitrate addition, the cells initiated a highly organized resuscitation program. In the first phase, they suppressed any residual photosynthetic activity and activated respiration to gain energy from glycogen catabolism. Concomitantly, they restored the entire translational apparatus, ATP synthesis, and nitrate assimilation. After only 12-16 hr, the cells re-activated the synthesis of the photosynthetic apparatus and prepared for metabolic re-wiring toward photosynthesis. When the cells reached full photosynthetic capacity after ∼48 hr, they resumed cell division and entered the vegetative cell cycle. An analysis of the transcriptional dynamics during the resuscitation process revealed a perfect match to the observed physiological processes, and it suggested that non-coding RNAs play a major regulatory role during the lifestyle switch in awakening cells. This genetically encoded program ensures rapid colonization of habitats in which nitrogen starvation imposes a recurring growth limitation.
Faculty of Science University of South Bohemia České Budějovice 370 01 Czech Republic
Institute of Microbiology University Stuttgart Allmandring 31 Stuttgart 70569 Germany
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18017002
- 003
- CZ-PrNML
- 005
- 20180523094837.0
- 007
- ta
- 008
- 180515s2016 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.cub.2016.08.054 $2 doi
- 035 __
- $a (PubMed)27720620
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Klotz, Alexander $u Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany.
- 245 10
- $a Awakening of a Dormant Cyanobacterium from Nitrogen Chlorosis Reveals a Genetically Determined Program / $c A. Klotz, J. Georg, L. Bučinská, S. Watanabe, V. Reimann, W. Januszewski, R. Sobotka, D. Jendrossek, WR. Hess, K. Forchhammer,
- 520 9_
- $a The molecular and physiological mechanisms involved in the transition of microbial cells from a resting state to the active vegetative state are critically relevant for solving problems in fields ranging from microbial ecology to infection microbiology. Cyanobacteria that cannot fix nitrogen are able to survive prolonged periods of nitrogen starvation as chlorotic cells in a dormant state. When provided with a usable nitrogen source, these cells re-green within 48 hr and return to vegetative growth. Here we investigated the resuscitation of chlorotic Synechocystis sp. PCC 6803 cells at the physiological and molecular levels with the aim of understanding the awakening process of a dormant bacterium. Almost immediately upon nitrate addition, the cells initiated a highly organized resuscitation program. In the first phase, they suppressed any residual photosynthetic activity and activated respiration to gain energy from glycogen catabolism. Concomitantly, they restored the entire translational apparatus, ATP synthesis, and nitrate assimilation. After only 12-16 hr, the cells re-activated the synthesis of the photosynthetic apparatus and prepared for metabolic re-wiring toward photosynthesis. When the cells reached full photosynthetic capacity after ∼48 hr, they resumed cell division and entered the vegetative cell cycle. An analysis of the transcriptional dynamics during the resuscitation process revealed a perfect match to the observed physiological processes, and it suggested that non-coding RNAs play a major regulatory role during the lifestyle switch in awakening cells. This genetically encoded program ensures rapid colonization of habitats in which nitrogen starvation imposes a recurring growth limitation.
- 650 12
- $a regulace genové exprese u bakterií $7 D015964
- 650 _2
- $a dusík $x metabolismus $7 D009584
- 650 _2
- $a bakteriální RNA $x metabolismus $7 D012329
- 650 _2
- $a nekódující RNA $x metabolismus $7 D022661
- 650 _2
- $a Synechocystis $x genetika $x fyziologie $7 D046939
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Georg, Jens $u Faculty of Biology Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg 79104, Germany.
- 700 1_
- $a Bučinská, Lenka $u Centre Algatech, Institute of Microbiology, Academy of Sciences of the Czech Republic, Třeboň 379 01, Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice 370 01, Czech Republic.
- 700 1_
- $a Watanabe, Satoru $u Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan.
- 700 1_
- $a Reimann, Viktoria $u Faculty of Biology Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg 79104, Germany.
- 700 1_
- $a Januszewski, Witold $u Faculty of Biology Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg 79104, Germany.
- 700 1_
- $a Sobotka, Roman $u Centre Algatech, Institute of Microbiology, Academy of Sciences of the Czech Republic, Třeboň 379 01, Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice 370 01, Czech Republic.
- 700 1_
- $a Jendrossek, Dieter $u Institute of Microbiology, University Stuttgart, Allmandring 31, Stuttgart 70569, Germany.
- 700 1_
- $a Hess, Wolfgang R $u Faculty of Biology Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg 79104, Germany.
- 700 1_
- $a Forchhammer, Karl $u Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany. Electronic address: karl.forchhammer@uni-tuebingen.de.
- 773 0_
- $w MED00006482 $t Current biology CB $x 1879-0445 $g Roč. 26, č. 21 (2016), s. 2862-2872
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/27720620 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20180515 $b ABA008
- 991 __
- $a 20180523095022 $b ABA008
- 999 __
- $a ok $b bmc $g 1300626 $s 1013842
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2016 $b 26 $c 21 $d 2862-2872 $e 20161006 $i 1879-0445 $m Current biology $n Curr Biol $x MED00006482
- LZP __
- $a Pubmed-20180515