• Je něco špatně v tomto záznamu ?

Awakening of a Dormant Cyanobacterium from Nitrogen Chlorosis Reveals a Genetically Determined Program

A. Klotz, J. Georg, L. Bučinská, S. Watanabe, V. Reimann, W. Januszewski, R. Sobotka, D. Jendrossek, WR. Hess, K. Forchhammer,

. 2016 ; 26 (21) : 2862-2872. [pub] 20161006

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc18017002

The molecular and physiological mechanisms involved in the transition of microbial cells from a resting state to the active vegetative state are critically relevant for solving problems in fields ranging from microbial ecology to infection microbiology. Cyanobacteria that cannot fix nitrogen are able to survive prolonged periods of nitrogen starvation as chlorotic cells in a dormant state. When provided with a usable nitrogen source, these cells re-green within 48 hr and return to vegetative growth. Here we investigated the resuscitation of chlorotic Synechocystis sp. PCC 6803 cells at the physiological and molecular levels with the aim of understanding the awakening process of a dormant bacterium. Almost immediately upon nitrate addition, the cells initiated a highly organized resuscitation program. In the first phase, they suppressed any residual photosynthetic activity and activated respiration to gain energy from glycogen catabolism. Concomitantly, they restored the entire translational apparatus, ATP synthesis, and nitrate assimilation. After only 12-16 hr, the cells re-activated the synthesis of the photosynthetic apparatus and prepared for metabolic re-wiring toward photosynthesis. When the cells reached full photosynthetic capacity after ∼48 hr, they resumed cell division and entered the vegetative cell cycle. An analysis of the transcriptional dynamics during the resuscitation process revealed a perfect match to the observed physiological processes, and it suggested that non-coding RNAs play a major regulatory role during the lifestyle switch in awakening cells. This genetically encoded program ensures rapid colonization of habitats in which nitrogen starvation imposes a recurring growth limitation.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18017002
003      
CZ-PrNML
005      
20180523094837.0
007      
ta
008      
180515s2016 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.cub.2016.08.054 $2 doi
035    __
$a (PubMed)27720620
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Klotz, Alexander $u Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany.
245    10
$a Awakening of a Dormant Cyanobacterium from Nitrogen Chlorosis Reveals a Genetically Determined Program / $c A. Klotz, J. Georg, L. Bučinská, S. Watanabe, V. Reimann, W. Januszewski, R. Sobotka, D. Jendrossek, WR. Hess, K. Forchhammer,
520    9_
$a The molecular and physiological mechanisms involved in the transition of microbial cells from a resting state to the active vegetative state are critically relevant for solving problems in fields ranging from microbial ecology to infection microbiology. Cyanobacteria that cannot fix nitrogen are able to survive prolonged periods of nitrogen starvation as chlorotic cells in a dormant state. When provided with a usable nitrogen source, these cells re-green within 48 hr and return to vegetative growth. Here we investigated the resuscitation of chlorotic Synechocystis sp. PCC 6803 cells at the physiological and molecular levels with the aim of understanding the awakening process of a dormant bacterium. Almost immediately upon nitrate addition, the cells initiated a highly organized resuscitation program. In the first phase, they suppressed any residual photosynthetic activity and activated respiration to gain energy from glycogen catabolism. Concomitantly, they restored the entire translational apparatus, ATP synthesis, and nitrate assimilation. After only 12-16 hr, the cells re-activated the synthesis of the photosynthetic apparatus and prepared for metabolic re-wiring toward photosynthesis. When the cells reached full photosynthetic capacity after ∼48 hr, they resumed cell division and entered the vegetative cell cycle. An analysis of the transcriptional dynamics during the resuscitation process revealed a perfect match to the observed physiological processes, and it suggested that non-coding RNAs play a major regulatory role during the lifestyle switch in awakening cells. This genetically encoded program ensures rapid colonization of habitats in which nitrogen starvation imposes a recurring growth limitation.
650    12
$a regulace genové exprese u bakterií $7 D015964
650    _2
$a dusík $x metabolismus $7 D009584
650    _2
$a bakteriální RNA $x metabolismus $7 D012329
650    _2
$a nekódující RNA $x metabolismus $7 D022661
650    _2
$a Synechocystis $x genetika $x fyziologie $7 D046939
655    _2
$a časopisecké články $7 D016428
700    1_
$a Georg, Jens $u Faculty of Biology Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg 79104, Germany.
700    1_
$a Bučinská, Lenka $u Centre Algatech, Institute of Microbiology, Academy of Sciences of the Czech Republic, Třeboň 379 01, Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice 370 01, Czech Republic.
700    1_
$a Watanabe, Satoru $u Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan.
700    1_
$a Reimann, Viktoria $u Faculty of Biology Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg 79104, Germany.
700    1_
$a Januszewski, Witold $u Faculty of Biology Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg 79104, Germany.
700    1_
$a Sobotka, Roman $u Centre Algatech, Institute of Microbiology, Academy of Sciences of the Czech Republic, Třeboň 379 01, Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice 370 01, Czech Republic.
700    1_
$a Jendrossek, Dieter $u Institute of Microbiology, University Stuttgart, Allmandring 31, Stuttgart 70569, Germany.
700    1_
$a Hess, Wolfgang R $u Faculty of Biology Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg 79104, Germany.
700    1_
$a Forchhammer, Karl $u Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany. Electronic address: karl.forchhammer@uni-tuebingen.de.
773    0_
$w MED00006482 $t Current biology CB $x 1879-0445 $g Roč. 26, č. 21 (2016), s. 2862-2872
856    41
$u https://pubmed.ncbi.nlm.nih.gov/27720620 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20180515 $b ABA008
991    __
$a 20180523095022 $b ABA008
999    __
$a ok $b bmc $g 1300626 $s 1013842
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 26 $c 21 $d 2862-2872 $e 20161006 $i 1879-0445 $m Current biology $n Curr Biol $x MED00006482
LZP    __
$a Pubmed-20180515

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace