-
Something wrong with this record ?
The Evolution of the FT/TFL1 Genes in Amaranthaceae and Their Expression Patterns in the Course of Vegetative Growth and Flowering in Chenopodium rubrum
J. Drabešová, L. Černá, H. Mašterová, P. Koloušková, M. Potocký, H. Štorchová,
Language English Country United States
Document type Journal Article, Research Support, Non-U.S. Gov't
NLK
Directory of Open Access Journals
from 2011
Free Medical Journals
from 2011
Freely Accessible Science Journals
from 2011-06-01 to 2020
PubMed Central
from 2011
Europe PubMed Central
from 2011
Open Access Digital Library
from 2011-01-01
Open Access Digital Library
from 2011-01-01
Oxford Journals Open Access Collection
from 2011-06-01
ROAD: Directory of Open Access Scholarly Resources
from 2011
PubMed
27473314
DOI
10.1534/g3.116.028639
Knihovny.cz E-resources
- MeSH
- Amaranthaceae classification genetics growth & development MeSH
- Phenotype MeSH
- Phylogeny MeSH
- Genetic Variation MeSH
- Genome, Plant MeSH
- Protein Conformation MeSH
- Flowers genetics MeSH
- Evolution, Molecular * MeSH
- Models, Molecular MeSH
- Multigene Family MeSH
- Organ Specificity MeSH
- Gene Expression Regulation, Plant * MeSH
- Genes, Plant * MeSH
- Plant Proteins chemistry genetics MeSH
- Gene Expression Profiling MeSH
- Light MeSH
- Transcriptome MeSH
- Computational Biology methods MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The FT/TFL1 gene family controls important aspects of plant development: MFT-like genes affect germination, TFL1-like genes act as floral inhibitors, and FT-like genes are floral activators. Gene duplications produced paralogs with modified functions required by the specific lifestyles of various angiosperm species. We constructed the transcriptome of the weedy annual plant Chenopodium rubrum and used it for the comprehensive search for the FT/TFL1 genes. We analyzed their phylogenetic relationships across Amaranthaceae and all angiosperms. We discovered a very ancient phylogenetic clade of FT genes represented by the CrFTL3 gene of C. rubrum Another paralog CrFTL2 showed an unusual structural rearrangement which might have contributed to the functional shift. We examined the transcription patterns of the FT/TFL1 genes during the vegetative growth and floral transition in C. rubrum to get clues about their possible functions. All the genes except for the constitutively expressed CrFTL2 gene, and the CrFTL3 gene, which was transcribed only in seeds, exhibited organ-specific expression influenced by the specific light regime. The CrFTL1 gene was confirmed as a single floral activator from the FT/TFL1 family in C. rubrum Its floral promoting activity may be counteracted by CrTFL1 C. rubrum emerges as an easily manipulated model for the study of floral induction in weedy fast-cycling plants lacking a juvenile phase.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18017130
- 003
- CZ-PrNML
- 005
- 20180523131408.0
- 007
- ta
- 008
- 180515s2016 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1534/g3.116.028639 $2 doi
- 035 __
- $a (PubMed)27473314
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Drabešová, Jana $u Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 165 02 Prague 6, Czech Republic.
- 245 14
- $a The Evolution of the FT/TFL1 Genes in Amaranthaceae and Their Expression Patterns in the Course of Vegetative Growth and Flowering in Chenopodium rubrum / $c J. Drabešová, L. Černá, H. Mašterová, P. Koloušková, M. Potocký, H. Štorchová,
- 520 9_
- $a The FT/TFL1 gene family controls important aspects of plant development: MFT-like genes affect germination, TFL1-like genes act as floral inhibitors, and FT-like genes are floral activators. Gene duplications produced paralogs with modified functions required by the specific lifestyles of various angiosperm species. We constructed the transcriptome of the weedy annual plant Chenopodium rubrum and used it for the comprehensive search for the FT/TFL1 genes. We analyzed their phylogenetic relationships across Amaranthaceae and all angiosperms. We discovered a very ancient phylogenetic clade of FT genes represented by the CrFTL3 gene of C. rubrum Another paralog CrFTL2 showed an unusual structural rearrangement which might have contributed to the functional shift. We examined the transcription patterns of the FT/TFL1 genes during the vegetative growth and floral transition in C. rubrum to get clues about their possible functions. All the genes except for the constitutively expressed CrFTL2 gene, and the CrFTL3 gene, which was transcribed only in seeds, exhibited organ-specific expression influenced by the specific light regime. The CrFTL1 gene was confirmed as a single floral activator from the FT/TFL1 family in C. rubrum Its floral promoting activity may be counteracted by CrTFL1 C. rubrum emerges as an easily manipulated model for the study of floral induction in weedy fast-cycling plants lacking a juvenile phase.
- 650 _2
- $a Amaranthaceae $x klasifikace $x genetika $x růst a vývoj $7 D027703
- 650 _2
- $a výpočetní biologie $x metody $7 D019295
- 650 12
- $a molekulární evoluce $7 D019143
- 650 _2
- $a květy $x genetika $7 D035264
- 650 _2
- $a stanovení celkové genové exprese $7 D020869
- 650 12
- $a regulace genové exprese u rostlin $7 D018506
- 650 12
- $a rostlinné geny $7 D017343
- 650 _2
- $a genetická variace $7 D014644
- 650 _2
- $a genom rostlinný $7 D018745
- 650 _2
- $a světlo $7 D008027
- 650 _2
- $a molekulární modely $7 D008958
- 650 _2
- $a multigenová rodina $7 D005810
- 650 _2
- $a orgánová specificita $7 D009928
- 650 _2
- $a fenotyp $7 D010641
- 650 _2
- $a fylogeneze $7 D010802
- 650 _2
- $a rostlinné proteiny $x chemie $x genetika $7 D010940
- 650 _2
- $a konformace proteinů $7 D011487
- 650 _2
- $a transkriptom $7 D059467
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Černá, Lucie $u Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 165 02 Prague 6, Czech Republic.
- 700 1_
- $a Mašterová, Helena $u Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 165 02 Prague 6, Czech Republic Department of Experimental Plant Biology, Faculty of Natural Sciences, Charles University, 128 44 Prague 2, Czech Republic.
- 700 1_
- $a Koloušková, Pavla $u Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 165 02 Prague 6, Czech Republic Department of Genetics and Microbiology, Faculty of Natural Sciences, Charles University, 128 44 Prague 2, Czech Republic.
- 700 1_
- $a Potocký, Martin $u Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 165 02 Prague 6, Czech Republic.
- 700 1_
- $a Štorchová, Helena $u Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 165 02 Prague 6, Czech Republic storchova@ueb.cas.cz.
- 773 0_
- $w MED00188068 $t G3 (Bethesda, Md.) $x 2160-1836 $g Roč. 6, č. 10 (2016), s. 3065-3076
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/27473314 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20180515 $b ABA008
- 991 __
- $a 20180523131553 $b ABA008
- 999 __
- $a ok $b bmc $g 1300754 $s 1013970
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2016 $b 6 $c 10 $d 3065-3076 $e 20161013 $i 2160-1836 $m G3 $n G3 (Bethesda) $x MED00188068
- LZP __
- $a Pubmed-20180515