The Evolution of the FT/TFL1 Genes in Amaranthaceae and Their Expression Patterns in the Course of Vegetative Growth and Flowering in Chenopodium rubrum
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
27473314
PubMed Central
PMC5068931
DOI
10.1534/g3.116.028639
PII: g3.116.028639
Knihovny.cz E-resources
- Keywords
- Amaranthaceae, Chenopodium rubrum, FLOWERING LOCUS T/TERMINAL FLOWER1 gene family, evolution, flowering, gene rearrangement, transcriptome,
- MeSH
- Amaranthaceae classification genetics growth & development MeSH
- Phenotype MeSH
- Phylogeny MeSH
- Genetic Variation MeSH
- Genome, Plant MeSH
- Protein Conformation MeSH
- Flowers genetics MeSH
- Evolution, Molecular * MeSH
- Models, Molecular MeSH
- Multigene Family MeSH
- Organ Specificity MeSH
- Gene Expression Regulation, Plant * MeSH
- Genes, Plant * MeSH
- Plant Proteins chemistry genetics MeSH
- Gene Expression Profiling MeSH
- Light MeSH
- Transcriptome MeSH
- Computational Biology methods MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Plant Proteins MeSH
The FT/TFL1 gene family controls important aspects of plant development: MFT-like genes affect germination, TFL1-like genes act as floral inhibitors, and FT-like genes are floral activators. Gene duplications produced paralogs with modified functions required by the specific lifestyles of various angiosperm species. We constructed the transcriptome of the weedy annual plant Chenopodium rubrum and used it for the comprehensive search for the FT/TFL1 genes. We analyzed their phylogenetic relationships across Amaranthaceae and all angiosperms. We discovered a very ancient phylogenetic clade of FT genes represented by the CrFTL3 gene of C. rubrum Another paralog CrFTL2 showed an unusual structural rearrangement which might have contributed to the functional shift. We examined the transcription patterns of the FT/TFL1 genes during the vegetative growth and floral transition in C. rubrum to get clues about their possible functions. All the genes except for the constitutively expressed CrFTL2 gene, and the CrFTL3 gene, which was transcribed only in seeds, exhibited organ-specific expression influenced by the specific light regime. The CrFTL1 gene was confirmed as a single floral activator from the FT/TFL1 family in C. rubrum Its floral promoting activity may be counteracted by CrTFL1 C. rubrum emerges as an easily manipulated model for the study of floral induction in weedy fast-cycling plants lacking a juvenile phase.
See more in PubMed
Ahn J. H., Miller D., Winter V. J., Banfield M. J., Lee J. H., et al. , 2006. A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO J. 25: 605–614. PubMed PMC
Blackman B. K., Strasburg J. L., Raduski A. R., Michaels S. D., Rieseberg L. H., 2010. The role of recently derived FT paralogs in sunflower domestication. Curr. Biol. 20: 629–635. PubMed PMC
Bolger A. M., Lohse M., Usadel B., 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114–2120. PubMed PMC
Cháb D., Kolář J., Olson M. S., Štorchová H., 2008. Two FLOWERING LOCUS T (FT) homologs in Chenopodium rubrum differ in expression patterns. Planta 228: 929–940. PubMed
Coelho C. P., Minow M. A., Chalfun A., Colasanti J., 2014. Putative sugarcane FT/TFL1 genes delay flowering time and alter reproductive architecture in Arabidopsis. Front. Plant Sci. 5: 221. PubMed PMC
Conti L., Bradley D., 2007. TERMINAL FLOWER is a mobile signal controlling Arabidpsis architecture. Plant Cell 19: 767–778. PubMed PMC
Corbesier L., Vincent C., Jang S. H., Fornara F., Fan Q. Z., et al. , 2007. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316: 1030–1033. PubMed
Cumming B. G., 1967. Early-flowering plants, pp. 277–299 in Methods in Developmental Biology, edited by Wilt F. H. , Wessels N. K. Crowell Co, New York.
D’Aloia M., Bonhomme D., Bouche F., Tamseddak K., Ormenese S., et al. , 2011. Cytokinin promotes flowering of Arabidopsis via transcriptional activation of the FT paralogue TSF. Plant J. 65: 972–979. PubMed
Dohm J. C., Minoche A. E., Holtgräwe D., Capella-Gutierrez S., Zakrzewski F., et al. , 2014. The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature 505: 546–549. PubMed
Drabešová J., Cháb D., Kolář J., Haškovcová K., Štorchová H., 2014. A darklight transition triggers expression of the floral promoter CrFTL1 and downregulates CONSTANS-like genes in a short-day plant Chenopodium rubrum. J. Exp. Bot. 65: 2137–2146. PubMed PMC
Duarte J. M., Wall P. K., Edger P. P., Landherr L. L., Ma H., et al. , 2010. Identification of shared single copy nuclear genes in Arabidopsis, Populus, Vitis and Oryza and their phylogenetic utility across various taxonomic levels. BMC Evol. Biol. 10: 61. PubMed PMC
Edgar R. C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32: 1792–1797. PubMed PMC
Fuentes-Bazan S., Mansion G., Borsch T., 2012. Towards a species level tree of the globally diverse genus Chenopodium (Chenopodiaceae). Mol. Phylogenet. Evol. 62: 359–374. PubMed
Goodstein D. M., Shu S., Howson R., Neupane R., Hayes R. D., et al. , 2012. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 40: D1178–D1186. PubMed PMC
Grabherr M. G., Haas B. J., Yassour M., Levin J. Z., Thompson D. A., et al. , 2011. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat. Biotechnol. 29: 644–652. PubMed PMC
Hanano S., Goto K., 2011. Arabidopsis TERMINAL FLOWER1 is involved in the regulation of flowering time and inflorescence development through transcriptional repression. Plant Cell 23: 3172–3184. PubMed PMC
Hanzawa Y., Money T., Bradley D., 2005. A single amino acid converts a repressor to an activator of flowering. Proc. Natl. Acad. Sci. USA 102: 7748–7753. PubMed PMC
Harig L., Beinecke F. A., Oltmanns J., Muth J., Müller O., et al. , 2012. Proteins from the FLOWERING LOCUS T-like subclade of the PEBP family act antagonistically to regulate floral initiation in tobacco. Plant J. 72: 908–921. PubMed
Hayama R., Agashe B., Luley E., King R., Coupland G., 2007. A circadian rhythm set by dusk determines the expression of FT homologs and the short-day photoperiodic flowering response in Pharbitis. Plant Cell 19: 2988–3000. PubMed PMC
Hedman H., Källman T., Lagercrantz U., 2009. Early evolution of the MFT-like gene family in plants. Plant Mol. Biol. 70: 359–369. PubMed
Ho W. W. H., Weigel D., 2014. Structural features determining flower-promoting activity of Arabidopsis FLOWERING LOCUS T. Plant Cell 26: 552–564. PubMed PMC
Huang N. C., Jane W. N., Chen J., Yu T. S., 2012. Arabidopsis thaliana CENTRORADIALIS homologue (ATC) acts systemically to inhibit floral initiation in Arabidopsis. Plant J. 72: 175–184. PubMed
Jaeger K. E., Wigge P. A., 2007. FT protein acts as a long-range signal in Arabidopsis. Curr. Biol. 17: 1050–1054. PubMed
Kalgren A., Gyllestrand N., Källman T., Sundström J. F., Moore D., et al. , 2011. Evolution of the PEBP gene family in plants: functional diversification in seed plant evolution. Plant Physiol. 156: 1967–1977. PubMed PMC
Kardailsky I., Shukla V., Ahn J. H., Dagenais N., Christensen S. K., et al. , 1999. Activation tagging of the floral inducer FT. Science 286: 1962–1965. PubMed
Kobayashi Y., Kaya H., Goto K., Iwabuchi M., Araki T., et al. , 1999. A pair of related genes with antagonistic roles in mediating flowering signals. Science 286: 1960–1962. PubMed
Kolano B., Tomczak H., Molewska R., Jellen E. N., Maluszynska J., 2012. Distribution of 5S and 35S rRNA gene sites in 34 Chenopodium species (Amaranthaceae). Bot. J. Linn. Soc. 170: 220–231.
Kozik, A., I. Kozik, H. Van Leeuwen, A. Van Deynze, and R. Michelmore, 2008 Eukaryotic ultra conserved orthologs and estimation of gene capture in EST libraries. Plant and Animal Genomes Conference XVI, San Diego.
Lachowiec J., Shen X., Queitsch C., Carlgorg Ö., 2015. A genome-wide association analysis reveals epistatic cancellation of additive genetic variance for root length in Arabidopsis thaliana. PLoS Genet. 11: e1005541. PubMed PMC
Langmead B., Trapnell C., Pop M., Salzberg S. L., 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10: R25. PubMed PMC
Li B., Dewey C. N., 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12: 323. PubMed PMC
Li B., Fillmore N., Bai Y., Collins M., Thomson J. A., et al. , 2014. Evaluation of de novo transcriptome assemblies from RNA-Seq data. Genome Biol. 15: 553. PubMed PMC
Li W., Godzik A., 2006. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22: 1658–1659. PubMed
Librado P., Rozas J., 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452. PubMed
Libus J., Štorchová H., 2006. Quantification of cDNA generated by reverse transcription of total RNA provides a simple alternative tool for quantitative RT-PCR normalization. Biotechniques 41: 156–164. PubMed
Lifschitz E., Ayre B. G., Eshed Y., 2014. Florigen and anti-florigen – a systemic mechanism for coordinating growth and termination in flowering plants. Front. Plant Sci. 5: 465. PubMed PMC
Loeve A., Loeve D., 1982. IOPB chromosome number reports LXXIV. Taxon 31: 120–126.
Martin J. A., Wang Z., 2011. Next-generation transcriptome assembly. Nat. Rev. Genet. 13: 671–682. PubMed
Nakamura Y., Andres F., Kanehara K., Liu Y. C., Doermann P., et al. , 2014. Arabidopsis florigen FT binds to diurnally oscillating phospholipids that accelerate flowering. Nat. Commun. 5: 4553. PubMed PMC
Nakasugi K., Crowhurst R., Bally J., Waterhouse P., 2014. Combining transcriptome assemblies from multiple de novo assemblers in the allo-tetraploid plant Nicotiana benthamiana. PLoS One 9: e91776. PubMed PMC
Navarro C. J. A., Abelenda E., Cruz-Oró C. A., Cuéllar S., Tamaki S., et al. , 2011. Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature 478: 119–122. PubMed
O’Neil S. T., Dzurisin J. D. K., Carmichael R. D., Lobo N. F., Emrich S. J., et al. , 2010. Population-level transcriptome sequencing of nonmodel organisms Erynnis propertius and Papilio zelicaon. BMC Genomics 11: 310. PubMed PMC
Pin P. A., Benlloch R., Bonnet D., Wremerth-Weich E., Kraft T., et al. , 2010. An antagonistic pair of FT homologs mediates the control of flowering time in sugar beet. Science 330: 1397–1400. PubMed
Robertson G., Schein J., Chiu R., Corbett R., Field M., et al. , 2010. De novo assembly and analysis of RNA-seq data. Nat. Methods 7: 909–912. PubMed
Ryu J. Y., Park C. M., Seo P. J., 2011. The floral repressor BROTHER OF FT AND TFL1 (BFT) modulates flowering initiation under high salinity in Arabidopsis. Mol. Cells 32: 295–303. PubMed PMC
Schulz M. H., Zerbino D. R., Vingron M., Birney E., 2012. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28: 1086–1092. PubMed PMC
Seidlová F., Krekule J., 1973. The negative response of photoperiodic floral induction in Chenopodium rubrum L. to preceding growth. Ann. Bot. (Lond.) 37: 605–614.
Simon R., Igeno M. I., Coupland G., 1996. Activation of floral meristem identity genes in Arabidopsis. Nature 384: 59–62. PubMed
Stamatakis A., 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313. PubMed PMC
Trapnell C., Williams B. A., Pertea G., Mortazavi A., Kwan G., et al. , 2010. Transcript assembly and abundance estimation from RNA-Seq reveals thousands of new transcripts and switching among isoforms. Nat. Biotechnol. 28: 511–515. PubMed PMC
Vaňková R., Petrášek J., Zažímalová E., Kamínek M., Motyka V., et al. , 2014. Auxins and cytokinins in plant development ... and interactions with other phytohormones 2014. J. Plant Growth Regul. 33: 709–714.
Veit J., Wagner E., Albrechtova J. T. P., 2004. Isolation of a FLORICAULA/LEAFY putative orthologue from Chenopodium rubrum and its expression during photoperiodic flower induction. Plant Physiol. Biochem. 42: 573–578. PubMed
Veit J., Wagner E., Albrechtova J. T. P., 2006. Floral dip transformation of Chenopodium rubrum, pp. 49–53 in Floriculture, Ornamental and Plant Biotechnology: Advances and Topical Issues, edited by Teixeira da Silva J. A. Global Science Books, Isleworth, UK.
Wada K. C., Yamada M., Shiraya T., Takeno K., 2010. Salicylic acid and the flowering gene FLOWERING LOCUS T homolog are involved in poor-nutrition stress-induced flowering of Pharbitis nil. J. Plant Physiol. 167: 447–452. PubMed
Wang Z., Zhou Z. K., Liu Y. F., Liu T. F., Li Q., et al. , 2015. Functional evolution of phosphatidylethanolamine binding proteins in soybean and arabidopsis. Plant Cell 27: 323–336. PubMed PMC
Webb B., Sali A., 2014. Protein structure modeling with MODELLER. Methods Mol. Biol. 1137: 1–15. PubMed
Wickland D. P., Hanzawa Y., 2015. The FLOWERING LOCUS T/TERMINAL FLOWER1 gene family: Functional evolution and molecular mechanisms. Mol. Plant 8: 983–997. PubMed
Xi W., Liu C., Hou X., Yu H., 2010. MOTHER OF FT AND TFL1 regulates seed germination through a negative feedback loop modulating ABA signaling in Arabidopsis. Plant Cell 22: 1733–1748. PubMed PMC
Xie Y., Wu G., Tang J., Luo R., Patterson J., et al. , 2014. SOAPdenovo-Trans, de novo transcriptome assembly with short RNA-seq reads. Bioinformatics 30: 1660–1666. PubMed
Yang Y., Smith S. A., 2013. Optimizing de novo assembly of short-read RNA-seq data for phylogenomics. BMC Genomics 14: 328. PubMed PMC
Zhang J., Ruhlman T. A., Mower J. P., Jansen R. K., 2013. Comparative analyses of two Geraniaceae transcriptomes using next-generation sequencing. BMC Plant Biol. 13: 228. PubMed PMC
A pangenome reveals LTR repeat dynamics as a major driver of genome evolution in Chenopodium