-
Je něco špatně v tomto záznamu ?
Nonlinear Heart Rate Variability based artificial intelligence in lung cancer prediction
Reema Shyamsunder Shukla, Yogender Aggarwal
Jazyk angličtina Země Česko
- MeSH
- analýza rozptylu MeSH
- dospělí MeSH
- elektrokardiografie metody statistika a číselné údaje využití MeSH
- lidé MeSH
- nádory plic * diagnóza komplikace MeSH
- nelineární dynamika MeSH
- nemoci autonomního nervového systému MeSH
- psychický stres * komplikace MeSH
- srdeční frekvence * fyziologie MeSH
- umělá inteligence MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
Lung cancer is uncontrolled growth of cells that occurs due to exposure to smoke, radiation and chemicals, which causes chronic stress and associated with impaired autonomic nervous system. Nonlinear heart rate variability (HRV) analysis has been suggested to uncover the performance status of lung cancer subjects and distinguish them from healthy controls. The present work obtained tachogram from recorded electrocardiogram of 104 lung cancer subjects and 30 healthy controls to extract HRV indices. The obtained results suggested lowered HRV (altered autonomic nervous system tone) values from Eastern Cooperative Oncology Group (ECOG) 1 to ECOG4. Subject males had higher HRV measures than their female counterparts. The HRV parameters decreased from ECOG PS of 1 to 4. Control females had higher HRV measures than control males. There was no association between age and HRV measures. Statistically, nonlinear HRV features were observed significant. ANN exhibited ECOG1 83.3%, ECOG2 50%, ECOG3 90%, ECOG4 95% and Controls 86.7%. The prediction analysis using artificial neural network (ANN) and support vector machine (SVM) scoring an accuracy of 93.09% and 100% with nonlinear HRV indices as input thus has been suggested to be a tool of prognostic importance.
Citace poskytuje Crossref.org
Literatura
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18023524
- 003
- CZ-PrNML
- 005
- 20190113125559.0
- 007
- ta
- 008
- 180703s2018 xr d f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.jab.2017.12.002 $2 doi
- 040 __
- $a ABA008 $d ABA008 $e AACR2 $b cze
- 041 0_
- $a eng
- 044 __
- $a xr
- 100 1_
- $a Shukla, Reema Shyamsunder $u Birla Institute of Technology, Department of Bio-Engineering, Mesra, Ranchi, India
- 245 10
- $a Nonlinear Heart Rate Variability based artificial intelligence in lung cancer prediction / $c Reema Shyamsunder Shukla, Yogender Aggarwal
- 504 __
- $a Literatura
- 520 9_
- $a Lung cancer is uncontrolled growth of cells that occurs due to exposure to smoke, radiation and chemicals, which causes chronic stress and associated with impaired autonomic nervous system. Nonlinear heart rate variability (HRV) analysis has been suggested to uncover the performance status of lung cancer subjects and distinguish them from healthy controls. The present work obtained tachogram from recorded electrocardiogram of 104 lung cancer subjects and 30 healthy controls to extract HRV indices. The obtained results suggested lowered HRV (altered autonomic nervous system tone) values from Eastern Cooperative Oncology Group (ECOG) 1 to ECOG4. Subject males had higher HRV measures than their female counterparts. The HRV parameters decreased from ECOG PS of 1 to 4. Control females had higher HRV measures than control males. There was no association between age and HRV measures. Statistically, nonlinear HRV features were observed significant. ANN exhibited ECOG1 83.3%, ECOG2 50%, ECOG3 90%, ECOG4 95% and Controls 86.7%. The prediction analysis using artificial neural network (ANN) and support vector machine (SVM) scoring an accuracy of 93.09% and 100% with nonlinear HRV indices as input thus has been suggested to be a tool of prognostic importance.
- 650 12
- $a nádory plic $x diagnóza $x komplikace $7 D008175
- 650 12
- $a psychický stres $x komplikace $7 D013315
- 650 _2
- $a nemoci autonomního nervového systému $7 D001342
- 650 12
- $a srdeční frekvence $x fyziologie $7 D006339
- 650 _2
- $a analýza rozptylu $7 D000704
- 650 _2
- $a nelineární dynamika $7 D017711
- 650 _2
- $a elektrokardiografie $x metody $x statistika a číselné údaje $x využití $7 D004562
- 650 _2
- $a umělá inteligence $7 D001185
- 650 _2
- $a dospělí $7 D000328
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a mužské pohlaví $7 D008297
- 700 1_
- $a Aggarwal, Yogender $u Birla Institute of Technology, Department of Bio-Engineering, Mesra, Ranchi, India
- 773 0_
- $t Journal of applied biomedicine $x 1214-021X $g Roč. 16, č. 2 (2018), s. 145-155 $w MED00012667
- 856 41
- $u https://jab.zsf.jcu.cz/pdfs/jab/2018/02/08.pdf $y plný text volně přístupný
- 910 __
- $a ABA008 $b B 2301 $c 1249 $y 4 $z 0
- 990 __
- $a 20180703055007 $b ABA008
- 991 __
- $a 20190113125808 $b ABA008
- 999 __
- $a ok $b bmc $g 1314621 $s 1020435
- BAS __
- $a 3
- BMC __
- $a 2018 $b 16 $c 2 $d 145-155 $i 1214-021X $m Journal of Applied Biomedicine $x MED00012667
- LZP __
- $c NLK197 $d 20190113 $a NLK 2018-35/vt