-
Je něco špatně v tomto záznamu ?
H+ translocation by weak acid uncouplers is independent of H+ electrochemical gradient
J. Plášek, D. Babuka, M. Hoefer,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
NLK
ProQuest Central
od 1997-02-01 do Před 1 rokem
Medline Complete (EBSCOhost)
od 2011-02-01 do Před 1 rokem
Health & Medicine (ProQuest)
od 1997-02-01 do Před 1 rokem
- MeSH
- biologický transport účinky léků MeSH
- karbonylkyanid-m-chlorfenylhydrazon farmakologie MeSH
- koncentrace vodíkových iontů účinky léků MeSH
- membránové potenciály * účinky léků MeSH
- protony * MeSH
- rozpřahující látky farmakologie MeSH
- Saccharomyces cerevisiae metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
According to the common view, weak acid uncouplers increase proton conductance of biological (and phospholipid bilayer) membranes, thus effecting H+ fluxes driven by their electrochemical gradients. Under certain conditions, however, uncouplers can induce unexpected effects opposite to the dissipation of H+ gradients. Results are presented here demonstrating CCCP-induced proton influx into Saccharomyces cerevisiae cytosol driven by the electrochemical potentials of CCCP and its CCCP- anions, independent of electrochemical H+-gradient. Another view of week acid uncouplers' action is proposed that is logically consistent with these observations.
Faculty of Mathematics and Physics Charles University Ke Karlovu 3 12116 Prague Czech Republic
Institute of Cellular and Molecular Botany University of Bonn Kirschallee 1 53115 Bonn Germany
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18024654
- 003
- CZ-PrNML
- 005
- 20180716121854.0
- 007
- ta
- 008
- 180709s2017 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/s10863-017-9724-x $2 doi
- 035 __
- $a (PubMed)28900787
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Plášek, Jaromír $u Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 12116, Prague, Czech Republic. plasek@karlov.mff.cuni.cz.
- 245 10
- $a H+ translocation by weak acid uncouplers is independent of H+ electrochemical gradient / $c J. Plášek, D. Babuka, M. Hoefer,
- 520 9_
- $a According to the common view, weak acid uncouplers increase proton conductance of biological (and phospholipid bilayer) membranes, thus effecting H+ fluxes driven by their electrochemical gradients. Under certain conditions, however, uncouplers can induce unexpected effects opposite to the dissipation of H+ gradients. Results are presented here demonstrating CCCP-induced proton influx into Saccharomyces cerevisiae cytosol driven by the electrochemical potentials of CCCP and its CCCP- anions, independent of electrochemical H+-gradient. Another view of week acid uncouplers' action is proposed that is logically consistent with these observations.
- 650 _2
- $a biologický transport $x účinky léků $7 D001692
- 650 _2
- $a karbonylkyanid-m-chlorfenylhydrazon $x farmakologie $7 D002258
- 650 _2
- $a koncentrace vodíkových iontů $x účinky léků $7 D006863
- 650 12
- $a membránové potenciály $x účinky léků $7 D008564
- 650 12
- $a protony $7 D011522
- 650 _2
- $a Saccharomyces cerevisiae $x metabolismus $7 D012441
- 650 _2
- $a rozpřahující látky $x farmakologie $7 D014475
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Babuka, David $u Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 12116, Prague, Czech Republic.
- 700 1_
- $a Hoefer, Milan $u Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany.
- 773 0_
- $w MED00002541 $t Journal of bioenergetics and biomembranes $x 1573-6881 $g Roč. 49, č. 5 (2017), s. 391-397
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/28900787 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20180709 $b ABA008
- 991 __
- $a 20180716122152 $b ABA008
- 999 __
- $a ok $b bmc $g 1316785 $s 1021575
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 49 $c 5 $d 391-397 $e 20170912 $i 1573-6881 $m Journal of bioenergetics and biomembranes $n J Bioenerg Biomembr $x MED00002541
- LZP __
- $a Pubmed-20180709