-
Je něco špatně v tomto záznamu ?
Doped Graphene for DNA Analysis: the Electrochemical Signal is Strongly Influenced by the Kind of Dopant and the Nucleobase Structure
H. Tian, L. Wang, Z. Sofer, M. Pumera, A. Bonanni,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2011
Free Medical Journals
od 2011
Nature Open Access
od 2011-12-01
PubMed Central
od 2011
Europe PubMed Central
od 2011
ProQuest Central
od 2011-01-01
Open Access Digital Library
od 2011-01-01
Open Access Digital Library
od 2011-01-01
Health & Medicine (ProQuest)
od 2011-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2011
PubMed
27623951
DOI
10.1038/srep33046
Knihovny.cz E-zdroje
- MeSH
- DNA chemie MeSH
- elektrochemické techniky metody MeSH
- grafit chemie MeSH
- sekvenční analýza DNA metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Doping graphene with heteroatoms can alter the electronic and electrochemical properties of the starting material. Contrasting properties should be expected when the doping is carried out with electron donating species (n-type dopants) or with electron withdrawing species (p-type dopants). This in turn can have a profound influence on the electroanalytical performance of the doped material being used for the detection of specific probes. Here we investigate the electrochemical oxidation of DNA bases adenine, guanine, thymine and cytosine on two heteroatom-doped graphene platforms namely boron-doped graphene (p-type dopant) and nitrogen-doped graphene (n-type dopant). We found that overall, boron-doped graphene provided the best response in terms of electrochemical signal sensitivity for all bases. This is due to the electron deficiency of boron-doped graphene, which can promote the oxidation of DNA bases, as opposed to nitrogen-doped graphene which possesses an excess of electrons. Moreover, also the structure of the nucleobase was found to have significant influence on the obtained signal. Our study may open new frontiers in the electrochemical detection of DNA bases which is the first step for label-free DNA analysis.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18025308
- 003
- CZ-PrNML
- 005
- 20180710093706.0
- 007
- ta
- 008
- 180709s2016 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/srep33046 $2 doi
- 035 __
- $a (PubMed)27623951
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Tian, Huidi $u Division of Chemistry &Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore.
- 245 10
- $a Doped Graphene for DNA Analysis: the Electrochemical Signal is Strongly Influenced by the Kind of Dopant and the Nucleobase Structure / $c H. Tian, L. Wang, Z. Sofer, M. Pumera, A. Bonanni,
- 520 9_
- $a Doping graphene with heteroatoms can alter the electronic and electrochemical properties of the starting material. Contrasting properties should be expected when the doping is carried out with electron donating species (n-type dopants) or with electron withdrawing species (p-type dopants). This in turn can have a profound influence on the electroanalytical performance of the doped material being used for the detection of specific probes. Here we investigate the electrochemical oxidation of DNA bases adenine, guanine, thymine and cytosine on two heteroatom-doped graphene platforms namely boron-doped graphene (p-type dopant) and nitrogen-doped graphene (n-type dopant). We found that overall, boron-doped graphene provided the best response in terms of electrochemical signal sensitivity for all bases. This is due to the electron deficiency of boron-doped graphene, which can promote the oxidation of DNA bases, as opposed to nitrogen-doped graphene which possesses an excess of electrons. Moreover, also the structure of the nucleobase was found to have significant influence on the obtained signal. Our study may open new frontiers in the electrochemical detection of DNA bases which is the first step for label-free DNA analysis.
- 650 _2
- $a DNA $x chemie $7 D004247
- 650 _2
- $a elektrochemické techniky $x metody $7 D055664
- 650 _2
- $a grafit $x chemie $7 D006108
- 650 _2
- $a sekvenční analýza DNA $x metody $7 D017422
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Wang, Lu $u Division of Chemistry &Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore.
- 700 1_
- $a Sofer, Zdenek $u Department of Inorganic Chemistry, Institute of Chemical Technology, 166 28 Prague 6, Czech Republic.
- 700 1_
- $a Pumera, Martin $u Division of Chemistry &Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore.
- 700 1_
- $a Bonanni, Alessandra $u Division of Chemistry &Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore.
- 773 0_
- $w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 6, č. - (2016), s. 33046
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/27623951 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20180709 $b ABA008
- 991 __
- $a 20180710093956 $b ABA008
- 999 __
- $a ok $b bmc $g 1317439 $s 1022229
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2016 $b 6 $c - $d 33046 $e 20160914 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
- LZP __
- $a Pubmed-20180709